
Cache Revive: Architecting Volatile STT-RAM Caches for
Enhanced Performance in CMPs

Adwait Jog† Asit K. Mishra§ Cong Xu† Yuan Xie†

Vijaykrishnan Narayanan† Ravishankar Iyer§ Chita R. Das†

†The Pennsylvania State University Intel Corporation§

University Park, PA 16802, USA Hillsboro, OR 97124, USA
{adwait,czx102,yuanxie,vijay,das}@cse.psu.edu {asit.k.mishra,ravishankar.iyer}@intel.com

ABSTRACT

High density, low leakage and non-volatility are the attractive fea-
tures of Spin-Transfer-Torque-RAM (STT-RAM), which has made
it a strong competitor against SRAM as a universal memory re-
placement in multi-core systems. However, STT-RAM suffers from
high write latency and energy which has impeded its widespread
adoption. To this end, we look at trading-off STT-RAM’s non-
volatility property (data-retention-time) to overcome these prob-
lems. We formulate the relationship between retention-time and
write-latency, and find optimal retention-time for architecting an
efficient cache hierarchy using STT-RAM. Our results show that,
compared to SRAM-based design, our proposal can improve per-
formance and energy consumption by 18% and 60%, respectively.

Categories and Subject Descriptors

B.3.2 [Hardware]: Memory Structures—Cache memories; B.7.1
[Integrated Circuits]: Types and Design Styles—Advanced tech-

nologies, Memory technologies

General Terms

Design, Experimentation, Measurement, Performance

Keywords

STT-RAM, Heterogeneous (hybrid) systems

1. INTRODUCTION
The emergence of multicore architectures in both embedded pro-

cessors as well as general purpose computing domain has started to
increasingly stress the demand for the on-chip cache memories. As
the number of cores on a chip continues to increase with technol-
ogy scaling, the demand for the on-chip memory would continue to
increase significantly, further worsening the memory wall problem
[3]. This memory wall problem is critical both from the perfor-
mance and power perspectives. Thus, it is imperative to look for
novel technology; circuit, and architectural techniques to address
the memory wall problem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

Spin-Transfer Torque RAM (STT-RAM) is a promising mem-
ory technology for future multi-core general purpose and embed-
ded systems that delivers on many aspects desirable of a universal
memory. STT-RAM has the potential to replace the conventional
on-chip SRAM caches because of its higher density, competitive
read times, and lower leakage power consumption compared to
SRAM. Its high-density property (3x-4x denser than conventional
SRAM) can provide denser memories at lower area footprint with
near-zero leakage energy. However, the latency and energy over-
head associated with the write operations are the key drawbacks
of this technology for providing competitive or better performance
compared to the SRAM-based cache hierarchy. Consequently, re-
cent efforts have focused on masking the effects of high write la-
tencies and write energy both at the architectural [16, 19] level and
circuit level [18]. In contrast to these approaches, a recent work ex-
plored the feasibility of relaxing STT-RAM data retention times to
reduce both write latencies and write energy [15]. This adaptable
feature of tuning the data retention time can be exploited in several
dimensions. The focus of this paper is to tune this data retention
time to closely match the required refresh time of the Last Level
Cache (LLC) blocks to achieve significant performance and energy
gains. In this context, the paper addresses several design issues
such as how to decide an appropriate retention time for the LLC,
what the relationship between retention time and write latency is,
and how we architect the cache hierarchy with volatile STT-RAM.

The non-volatile nature and non-destructive read ability of STT-
RAM are the key differences with regard to traditional on-chip
cache design with SRAM technology. However, as our analysis
will show, for many emerging applications, it is sufficient to store
the valid data in the LLC for a few tens of ms in contrast to µs

for the L1 cache [10]. Consequently, the duration of data retention
in STT-RAM is an obvious candidate for device optimization in the
cache design. We, therefore, conduct an application-driven study to
analyze the inter-write times (refresh times) of the L2 cache blocks
to determine a suitable data retention time. Although lifetime anal-
ysis of cache lines has been conducted earlier to improve perfor-
mance and reduce power consumption [9, 10], we revisit this topic
with a different intention - correlating STT-RAM data-retention
time to cache lifetime. An extensive analysis of emerging work-
loads using the M5 simulator [2] indicates that the average inter-
write times for most of the L2 cache blocks is close to 10ms, and
thus, we advocate our STT-RAM design with this retention time.

A key challenge in determining a suitable data-retention time for
the STT-RAM is to balance the reduced write latency of STT-RAM
cells with lower retention time against the overhead for data refresh
or write-back of cache lines with longer lifetimes. In this paper,
we compare 3 different STT-RAM based cache designs: (1) STT-
RAM cache without retention time relaxation (10+ years of data

S
w

itc
hi

ng
 c

ur
re

nt
 (

ar
bi

tr
ar

y)

precessional

switching

dynamic

reversal

thermal

activation

0.1 1 10 100 1000

S
w

itc
hi

ng
 c

ur
re

nt
 (

ar
bi

tr
ar

y)

Write Pulse Width (ns)

Figure 1: Demonstration of three different switching phases

retention time); (2) STT-RAM cache with retention time of 1sec,
which is long enough for the inter-write time of majority of the
cache lines, and therefore, no refreshing overhead is incurred; and
(3) STT-RAM cache with retention time of 10ms, which is a more
aggressive design with better performance/energy gain, but a data
refreshing technique is needed for correct operations, since cache
lines that have inter-write times exceeding 10ms are likely to lose
data. Thus, we propose simple extensions to the L2 cache design
for avoiding any data loss. This includes a simple 2-bit counter
to keep track of the inter-write times of all the cache blocks and a
small buffer to temporarily store the blocks whose inter-write time
has exceeded the retention time.

The primary contributions of this paper can be summarized as:
(1) Detailed characterization of STT-RAM volatility property:

We present a detailed device characterization of data-retention tun-
ability in STT-RAM cells, providing insight into the underlying
principles enabling these tradeoffs.
(2) An application-driven study to determine retention time:

With the aid of application level characterization, we propose the
design of STT-RAM with the retention time in the range of 10ms.
Also, such a design makes the LLC homogeneous (all same type of
STT-RAM cells) leading to lower die cost and ease in fabrication.
(3) Architectural solution to handle STT-RAM volatility: We
present a simple buffering mechanism to ensure the integrity of the
programs given the volatile nature of our tuned STT-RAM cells.
This scheme is simple, yet very energy and performance efficient.

2. STT-RAM DESIGN
In this section, we present a detailed discussion of STT-RAM

models which we have developed to guide us in our exploration of
suitable STT-RAM device for LLC. Preliminaries for STT-RAM
can be reviewed in supplemental Sec. S.1 as well as in [4, 5, 12].

2.1 Write Current vs. Write Pulse Width
In this section, we will establish the relationship between write

current and write pulse width. In [4], three distinct switching modes
were identified based on the operating range of switching pulse
width (τ): thermal activation (TA) (τ > 20ns), precessional switch-
ing (PS) (τ < 3ns) and dynamic reversal (DR) (3ns < τ < 20ns).
The relationship between switching current density (Jc), and write
pulse width (τ) in these three operating ranges are characterized by
the following analytical model [14, 18]:
(1) Jc,TA(τ) = Jc0{1 − (kBT

Eb
)ln(τ

τ0
)}

(2) Jc,PS(τ) = Jc0 + C
τγ

(3) Jc,DR(τ) =
Jc,T A(τ)+Jc,P S(τ)e−k(τ−τc)

1+e−k(τ−τc)

where, Jc,TA, Jc,PS , Jc,DR are the switching current densities for
TA, PS and DR respectively. Jc0 is the critical switching current
density, kB is the Boltzmann constant, T is the temperature, Eb is
the thermal barrier, and τ0 is the inverse of attempt frequency. C,
γ, k, and τc are fitting constants.

Figure 1 shows write current vs. write pulse width characteris-
tics for PS, DR and TA modes. In TA mode, the switching current
increases very slowly with decrease in write pulse width. This sug-

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

W
ri

te
 C

u
rr

e
n

t
(u

A
)

Write Pulse Width (ns)

10 years 1sec 10ms

A

B

C

B'

C'

Figure 2: Write current vs. write pulse width for different MTJ retention time

gests that, in TA mode, shorter pulse width is beneficial in reducing
write latency and energy without hampering the read latency and
energy. On the contrary, in PS mode, write current goes up rapidly
as we reduce the write pulse width and minimum write energy of
the MTJ can only be obtained at some particular write pulse width
in this region, as shorter write pulse width with optimal write cur-
rent can still provide necessary write energy to switch. DR mode
has intermediate characteristics compared to PS and TA. Based on
these trade-offs, this paper focuses on PS and DR modes for achiev-
ing our overall goal of minimizing write latency and energy.

2.2 Impact of Retention Time on MTJ Char-
acteristics

Retention time of an MTJ is primarily impacted by the thermal
stability of its free layer. The relationship between retention time
and thermal barrier can be modeled as t = C × ek∆ [15], where t
is the retention time and ∆ is the thermal barrier, while C and k are
fitting constants. This relationship suggests that retention time of
an MTJ reduces exponentially with reduction in the thermal barrier.
As described in [7], the switching current of MTJ decreases as ther-
mal barrier is reduced. Here, we combine this observation with the
write current versus write time trade-off described in Sec. 2.1, to
conclude that faster write speed or/and small write current/energy
can be obtained by lowering the thermal barrier of a MTJ, at the
cost of lower retention time.

Thermal barrier of an MTJ can be lowered by reducing the MTJ
planar area [15] and thickness of the MTJ [13]. In our study, we use
2F 2 state-of-the-art in-plane MTJ [7] as our baseline with 10+years
of retention time and thermal barrier of 72kBT , where kB is the
Boltzmann constant and T is the temperature. Since we use opti-
mized 2F 2 cell, there is not much leeway to reduce the planar area.
Instead, we decrease the thickness of the free layer and lower the
saturation magnetization to obtain lower thermal barrier. The min-
imum thickness of the free layer for the MTJs in our work is 2nm
and we do not reduce it further to avoid reliability and process vari-
ation issues. Our volatile MTJs have thermal barriers of 46kBT and
40kBT , which correspond to retention times of 1sec and 10ms at
125 ◦C, respectively.

We obtained raw experimental data from our device collabo-
rator and further did curve fitting using the in-plane MTJ device
equations (1)-(3). The curve-fitted results for three different MTJs
(10years, 1sec, 10ms) are shown in Figure 2. Operating point
A(10ns, 114µA) serves as our baseline [5]. By fixing the write
pulse width at 10ns, we reduce the write current to obtain volatile
MTJs operating at B(10ns, 73µA) and C(10ns, 40µA). Then we
apply the write current versus write time trade-off on these op-
erating points to reduce the write latency. Specifically, we op-
erate the MTJ with 1sec retention time at point B’(5ns, 82µA)
which corresponds to 28% lower write current than that of base-
line (point A). Also, we operate 10ms-retention time MTJ at point
C’(2ns, 61µA) which further cuts down the write current by 25%.
Hence, we observe that relaxation of retention time of STT-RAM
can reduce both write latency and energy. Based on this analy-
sis, we integrate the cache-level SRAM and STT-RAM models in

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

frrt. fluid. x264 AVG.

Pe
rc

en
ta

ge
 o

f B
lo

ck
s

40+ ms

40 ms

30 ms

20 ms

10 ms

5 ms

0.29s 0.15s 0.76s 0.37s

Figure 3: Distribution of blocks showing different revival times (value on the

top of a bar show the maximum revival time for that distribution)

NVsim [6] and simulation results are tabulated in Table 3 (supple-
mental Sec. S.3).

3. AN APPLICATION-DRIVEN APPROACH

TO DETERMINE RETENTION TIME
In order to leverage the volatile STT-RAM properties, we need to

know what the ideal/feasible retention time should be. Ideally, the
STT-RAM write latency should be competitive to SRAM latency
and the cache retention time should be high. However, as discussed
in the previous section, since the write latency is inversely propor-
tional to the retention time, we need to find a feasible trade-off
based on the STT-RAM device characteristics. Thus, we attempt
to decide an ideal retention time by analyzing the retention times
of LLC blocks in multithreaded PARSEC 2.1 [1] and multipro-
grammed SPEC 2006 environment. These suites include emerging
workloads from desktop to server domains. dedup and bzip2

are compression schemes and facesim simulates face (important
in facial recognition and virtual-reality systems). vips and x264
are image processing and video encoding workloads, respectively.
All these workloads can be hosted on high end mobile/tablet pro-
cessors. The main idea is to understand the distribution of the inter-
write intervals to an LLC and use the average of these intervals as
the STT-RAM retention time.

3.1 Relating Application Characteristics to
Retention Time

Application characterization gives the basis for evaluating the
impact of retention time on the overall system performance. In or-
der to do this characterization, the first step is to investigate the
duration for which the cache block should retain the data. A cache
block is only refreshed when the block is written. Thus, we record
intervals between two successive writes (refreshes) to the same L2
cache block. We define this interval as the revival time. While
collecting these results, we ensure that if a block gets invalidated
in between two consecutive writes, we do not consider the time in
between the invalidation and the next write. Previous work [10]
has done similar type of revival time analysis, but it was for the
L1 cache. Figure 3 shows the distribution of L2 cache blocks
having different revival time intervals. These results are obtained
by running emerging workloads on the M5 Simulator [2]. Ta-
ble 2 contains additional details of the system configuration. Fig-
ure 3 shows the results of three applications along with the averages
across the entire PARSEC 2.1 suite. We observe similar distribu-
tion for SPEC 2006 applications and more details are given in sup-
plemental Sec. S.7. We observe from the figures that, on average,
approximately 50% of the cache blocks get refreshed within 10ms,
which is in contrast to the µs reuse for L1 cache studied in [10].
About 20% of blocks remain in the cache for more than 40ms and
rest of the blocks have intermediate revival times. Blocks that stay
longer than the retention time in the cache without being refreshed

Table 1: Retention and Write Latencies for STT-RAM L2 Cache
Retention Time 10years 1sec 10ms

Write Latency @2GHz 22 cycles 12 cycles 6 cycles

Block

State

WAY

ID

T
a

g
 a

rr
a

y

2-bit counter
per block

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

A

B

16 ways

S0 S2 S1 S1 S2 S1 S2 S0 S1 S0 S2 S2 S1 S1 S0 S2

YES

B

T T T

T T T TT

Sn-1 Sn

S0 S3

(i)

...S2S1S0 Si

W
W ED

W

W

W

4
YES

Sn-1 Sn

Buffer

Buffer Full?

23
B

(a)

NO

Dirty ?

Place
in
buffer

Place back
in cache

B

T = Counter pulse width
W = Write/Invalidate
D = Diminishing
E = Expired

YES NO

WB INV

C

W

W
ED

S0 S1 S2 S3

(b)

(ii)

W

INV

State != S0?

NO

Don't

Copy

YES

Figure 4: A modified 16-way L2 cache architecture with a 2-bit counter and

a small buffer

are assumed to be expired. This distribution also gives us the basis
on which we can choose the optimal retention time. Reducing the
retention time too much will make the cache highly volatile lead-
ing to degraded performance, while increasing the retention time
would negatively affect the write latency.

3.2 Low Retention STT-RAM Characteristics
Table 1 summarizes the retention time and write latency tradeoffs

based on the analysis of Sec. 2. The results indicate a significant
reduction in write latency with reduction in retention time. Note
that one can possibly lower the retention time further beyond the
ms ranges, but it becomes much harder to control the variations
which in turn diminish the benefits of performance/energy, since
the number of blocks to be refreshed increases (Figure 3).

From above discussions we conclude that, from the application
perspective, it is best to choose a retention time which minimizes
the number of unrefreshed blocks and from the technology side, it
is ideal to use STT-RAM with minimum write latency and energy.

4. ARCHITECTING VOLATILE STT-RAM
In this section, we propose architectural solutions starting with a

naive scheme of writing back all the dirty blocks to a more sophis-
ticated scheme, where we minimize the number of write backs.

4.1 Volatile STT-RAM
In this design, we write back all the unrefreshed dirty blocks

which become volatile after the retention time. To identify these
blocks, we maintain a counter per cache block. Each cache block
uses an n-bit counter (shown in Figure 4(b)(i)). We assume the time
between transitions (T) from one state to another equals to the re-
tention time divided by the number of states, where the number of
states is 2n. A block starts in state S0 when it is first brought to the
cache. After every transition time (T), the counter of each block is
incremented. When a block reaches state Sn−1, it indicates that it is
going to expire in time T. We define this time as the leftover time
and the block in state Sn−1 as the diminishing block. Increasing
the value of n will decrease the leftover time at the cost of increased
overhead of checking the blocks at a finer granularity. For example,
if we use a 2-bit counter, the leftover time is 2.5ms and for a 3-bit
counter, it is 1.25ms. A larger bit counter decreases the leftover
time and allows more time for a block to stay in the cache before
applying any refreshing techniques. This gives the block more op-
portunity to stay in the cache at the cost of maintaining a counter
with high number of bits.

Our experimental results show that a 2-bit counter, similar to
the one used in [9], suffices to detect the expiration time of the
blocks without significantly affecting the performance. With a 2-
bit counter, a block can be in one of the four states as shown in
Figure 4 (b)(ii). A block moves from state S0 to state S3 in steps of
2.5ms and at any time the block is written/invalidated, it goes back
to the initial state. The counter bits are kept as a part of the SRAM
tag array. The overhead of the 2-bit counter is 0.4% for one L2
cache bank. This scheme has a negative impact on the performance
for two reasons: (1) There will be a large number of write backs to
the main memory for all the dirty blocks at the end of the retention
time. (2) The expired block could have been frequently read and
losing it will incur additional read misses.

4.2 Revived STT-RAM Scheme
To minimize the write back overhead of the expired blocks at the

end of retention time, we propose a different technique, where we
use a small buffer to hold a subset of diminishing blocks. We call
this design as the revived STT-RAM scheme. These dirty blocks
are, thus, not written back to the main memory. They are written
to the temporary buffer and written back to the cache to start an-
other fresh cycle. Figure 4(a) shows the schematic diagram of the
proposed scheme. The main components of this design are:
Buffer: It is a per bank small storage space with a fixed number
of entries made up of low-retention time STT-RAM cells. We use
these entries to temporarily store the diminishing blocks.
Buffer Controller: The buffer controller consists of a log2N bit
buffer overflow detector, where N is the buffer size. The overflow
detector is first checked to see the occupancy of the buffer, when a
diminishing block is directed to the buffer and the buffer overflow
detector is incremented. The block is copied to one of the empty
buffer entries along with the set and way ID, if there is buffer space.
If the buffer is full, the dirty blocks are written back to the main
memory; otherwise they are invalidated.
Implementation Details: Figure 4 (a) shows a 16-way set associa-
tive cache bank with the associated tag array. We show the working
of our scheme using a 2-bit counter. One of the sets is shown in de-
tail to clarify the details of the scheme. All the blocks in a set are
marked with their current state. Each bank is associated with a
buffer and the buffer controller. Let us consider that the buffering
scheme incorporates eight MRU slots (in supplemental Sec. S.8 we
show that eight MRU slots give the best benefits). In Figure 4(a),
¶ shows that three blocks in first eight MRU slots are diminishing
and directed to the buffer. Please note that, we apply our scheme
only to the diminishing (to-be-expired) blocks, which gives enough
time for the scheme to be completed before actual data loss hap-
pens. · checks the occupancy of the buffer and if it is not full,
each of the diminishing blocks is copied to one of the entries of ¸

along with way and set IDs. Way and set IDs are again used by
· to copy back the blocks to the same place in the L2 cache. A©
shows the blocks which are not in MRU slots, but are diminishing.
We check these blocks in B© to see whether they are dirty or not.
If they are dirty, we write back (WB) those blocks as shown in C©
and then invalidate (INV). If they are not dirty, they are just inval-
idated. During this whole refresh process, if a read request for the
cache block arrives, it will be successfully completed as the data
is still valid during that time. If a write/invalidate request arrives,
the cache block goes back to its original state. To make sure we
don’t copy the stale data from the buffer, we perform a state check
before copying back as shown in ¹. Moreover, our implementation
assumes the worst-case temperature of 125 ◦C, and hence, there is
no possibility of early expiration of block because of sudden reduc-
tion in STT-RAM retention time.

Table 2: Baseline system configuration

Processor Pipeline 2 GHz processor Fetch/Exec/Commit width 8

L1 Cache (SRAM) 32 KB per-core (private) I/D cache, 4-way
64B block size, write-back, 10 MSHRs

L2 Cache (SRAM or STT-RAM) 1MB (SRAM) or 4MB (STT-RAM) bank, shared,
16-way , 64B block size, 10 MSHRs

Network Ring network, one router per bank,
3 cycle router and 1 cycle link latency

Main Memory 400 cycle access

5. EXPERIMENTAL EVALUATION
We evaluate our designs using M5 Simulator [2] with PARSEC

2.1 and SPEC 2006 applications. We model a 2GHz processor with
four cores. We modified the M5 simulator to model L2 cache banks
composed of tunable retention time STT-RAM cells. Table 2 details
our experimental system configuration. More details on methodol-
ogy of collection of results are described in supplemental Sec. S.7.
The design scenarios we evaluate are:

• S-1MB: This is our baseline scheme, where all L2 cache banks
are composed of SRAM cells. Capacity of each bank is 1MB.

• S-4MB: This is a hypothetical case, where capacity of each
bank is 4MB and each bank has the same read and write latency
as that of S-1MB. This case is analyzed to see the potential benefit
of having a 4x improvement in cache capacity at 4x area density,
while still having read/write latencies comparable to SRAM. This
hypothetical design has the capacity and area of an STT-RAM but
the read/write latencies of an SRAM cache.

• M-4MB: This is our baseline scheme for STT-RAM design,
where all L2 cache banks are composed of 10 year retention time
STT-RAM cells. Capacity of each bank is 4MB and each bank
occupies the same area as that of an SRAM bank.

• Volatile M-4MB(1sec): This design is used to evaluate our
Volatile STT-RAM Scheme described in Sec. 4, where all L2 cache
banks are composed of 1sec retention time STT-RAM cells.

• Volatile M-4MB(10ms): This design is similar to Volatile M-
4MB(1sec) but with 10ms STT-RAM retention time.

• Revived M-4MB(10ms): This design is used to evaluate our
Revived STT-RAM Scheme, where all L2 cache banks are com-
posed of 10ms retention time STT-RAM cells. All the results are
for the design with 8 MRU Slots and 1900 Buffer Slots.

6. ANALYSIS OF RESULTS
In this section, we provide a comparative analysis of the perfor-

mance and energy results of the proposed six designs.

6.1 Performance Comparison
Figure 5(a) shows speedup results with multithreaded applica-

tions along with the average improvements. Only 9 applications
are shown to reduce clutter in the plots, however, the average (arith-
metic mean) numbers are computed across the entire suite.
(A) Speedup when replacing an SRAM with hypothetical cache:
We find that this hypothetical design has an average speedup of
23% over the SRAM cache. This is the maximum performance
that any scheme can provide.
(B) Speedup when replacing an SRAM with 4MB, 10years re-

tention time STT-RAM: We find that, for the M-4MB design, all
applications to the right of x264 (including x264) exhibit speedup
improvements over S-1MB. Most of these applications are read in-
tensive applications (see Table 4) and thus, they benefit from not
only the 4x capacity increase of STT-RAM, but also from the pres-
ence of a L2 cache write buffer. On average, we find 6% improve-
ment in speedup over S-1MB for these applications. Although
ferret and vips are write-intensive applications, they benefit
with a 4x improvement in capacity when going from a S-1MB to
M-4MB. This is because, the write request to L2 cache banks in

0.70.80.911.11.2S-1MB S-4MB M-4MB Volatile M-4MB(1sec) Volatile M-4MB(10ms) Revived-M-4MB(10ms)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

dedup freq. rtvw. swpts. x264 frrt. fcsim. vips fluid. AVG.

No
rm

ali
ze

d
Sp

ee
du

p

0.7

0.8

0.9

1

1.1

1.2

Instruction Throughput Weighted Speedup

(a) PARSEC 2.1 (b) SPEC 2006

Figure 5: Performance of applications normalized to that of S-1MB

these two applications are staggered in time and an 10-entry write
buffer proves to be sufficient to hide the long write latencies.

All applications to the left of x264 are write-intensive and have
bursty requests arriving at L2 cache banks. For these applications,
we observe significant degradation in speedup (on average 11%
degradation) because of the high write latency of STT-RAM. Over-
all, when averaged across the entire suite, a traditional 10years
STT-RAM gives a minimal 5% speedup improvement over S-1MB.
However, a 10years STT-RAM cache organization has 14% lower
performance when compared to the hypothetical design S-4MB and
with write-intensive applications. This is the gap that our proposal
seeks to bridge by tuning the retention time.
(C) Speedup when replacing a SRAM with 4MB, 1sec retention

time STT-RAM: With such a STT-RAM cache bank, no refresh-
ing schemes are employed. As shown earlier, almost all blocks get
refreshed within a 1sec time interval. Reducing the retention time
from 10years to 1sec reduced the write latency of a cache bank
by 10 cycles (from 22 cycles to 12 cycles). This leads to significant
speedup improvements over a 10years retention time STT-RAM
cache organization. On average, this reduction in 10 cycles lead
to 6% performance improvement (14% for write intensive applica-
tions). However, this design is still 9% (11% for write intensive
applications) lower in performance than the hypothetical case.
(D) Speedup when replacing a SRAM with 4MB, 10ms reten-

tion time STT-RAM without refreshing: This volatile M-4MB
(10ms) design also does not have any refreshing scheme, but the
retention time of STT-RAM cells used is 10ms. After 10ms, this
STT-RAM device will lose its data and hence to keep the integrity
of the data a large number of write-backs are forced from the LLC
to the main-memory before the actual expiration happens.
(E) Speedup when replacing a SRAM with 4MB, 10ms reten-

tion time STT-RAM with refreshing (Revived-M-4MB(10ms)):
This is our proposed scheme, which incorporates refreshing of dirty
blocks beyond the 10ms retention time. Our scheme significantly
improves performance when compared to all realistic design sce-
narios evaluated. On average, the proposed revived scheme is better
than the conventional SRAM design (S-1MB) by 18%, traditional
10years STT-RAM by 15% and over Volatile M-4MB(1sec) by
4.5%. The write latency of this STT-RAM cache bank is 6 cycles
and when compared to a 1sec retention time STT-RAM, the differ-
ence of 6 cycles reduction in L2 cache bank access time helps in im-
proving performance. This performance improvement is in spite of
the increase in the number of write-backs (which increase by over
2x) compared to an SRAM cache. The Revived-M-4MB(10ms)
scheme is closest to the hypothetical S-4MB case and is within 5%
of it, showing the benefits of our scheme in making the STT-RAM
device a choice for universal memory.
(F) Analysis with SPEC 2006: In general, the observations with
SPEC applications are consistent with those made with PARSEC
2.1 applications. Figure 5(b) shows Instruction Throughput (IT)
and Weighted Speedup (WS) with the multiprogrammed mixes (sup-
plemental Table 5). Simply replacing a SRAM bank with 4MB

STT-RAM would lead to 11% degradation in IT, and 4% degrada-
tion in WS. However, employing our refreshing scheme on a 10ms
volatile STT-RAM can lead to an average 22%, 11% and 10% im-
provement over M-4MB, Volatile M-4MB(1sec) and S-1MB, re-
spectively. With a write intensive mix (bzip2, gcc, lbm and
hmmer) this improvement can be as high as 35% over the base-
line SRAM design. WS also follows a similar trend as WS and we
find that our proposed refreshing scheme on a 10ms retention time
volatile STT-RAM shows the best results. Overall, our proposed
design is within 9% (2%) of the hypothetical device (S-4MB) in
terms of IT (WS).

6.2 Energy Usage Comparison
Figure 6 shows normalized leakage, dynamic energy (reads +

writes), and total energy for a subset of applications. While com-
puting the energy numbers, we take into account the overheads of
our proposed cache block refreshing schemes. We observe that on
average, there is 44% improvement in total energy going from S-
1MB to M-4MB designs. This improvement is mainly because
of the drastic reduction in leakage energy (43%). In general, all
volatile STT-RAMs reduce the energy envelope of the LLC. With
1sec volatile STT-RAM, total energy is reduced because of reduc-
tion in leakage energy and also nominal performance improvement.
However, when comparing Volatile M-4MB(10ms) with Volatile
M-4MB(1sec), because of larger number of write-backs with 10ms
retention time STT-RAMs, the performance degrades and thus, leak-
age energy increases. With our proposed cache block refreshment
scheme, although there is an increase in the dynamic energy on ac-
count of additional back and forth writes to the buffer and cache
lines, we consistently observe improvement in total energy. This
is mainly attributed to the fact that fraction of dynamic energy to
the total energy is not significant because of very high leakage en-
ergy and fast switching times of cores. On average, we find 11%
energy benefits of using revived M-4MB design over Volatile M-
4MB(1sec) and 18% improvement over the baseline STT-RAM de-
sign. We observe similar benefits with SPEC 2006 applications, but
for the sake of brevity we are not showing them.

7. PRIOR WORK
The work that is most closely related to ours is [15]. In this,

the authors relax the retention time of STT-RAM from 10years to
56µs by reducing the planar area of MTJ. Our application driven
analysis shows that the ideal retention time of LLC should be in
the range of ms. Recently published work related to STT-RAM [7,
11] uses state-of-the-art MTJ designs in the range of 2-3F 2 which
do not give the leeway of reducing the retention time by aggres-
sively reducing the MTJ planar area, we reduce the retention time
by lowering the saturation magnetization and the thickness of the
free layer. Also, our proposed refresh scheme is simple, yet very
performance and energy efficient compared to the DRAM-style re-
freshing proposed in [15] (also see Sec. S.9)

A very recent effort [17] explores the possibility of designing

0.5

S-1MB M-4MB Volatile M-4MB(1sec) Volatile M-4MB(10ms) Revived M-4MB(10ms)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dedup fcsim. freq. rtvw. AVG.

N
or

m
al

iz
ed

 L
ea

ka
ge

 E
ne

rg
y

0.5

1

1.5

2

2.5

3

3.5

dedup fcsim. freq. rtvw. AVG.

N
or

m
al

iz
ed

 D
yn

am
ic

 E
ne

rg
y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dedup fcsim. freq. rtvw. AVG.

N
or

m
al

iz
ed

 T
ot

al
 E

ne
rg

y

(a) Leakage energy (b) Dynamic energy (c) Total energy

Figure 6: Energy of applications normalized to that of S-1MB

LLC with STT-RAM banks of varying retention times and moving
dying blocks from lowest retention time (µs) bank to the higher
ones [17]. In contrast to this work that populates STT-RAM cells
of different retention times, we tune our design for single reten-
tion times across the memory hierarchy. Our approach eases the
challenge of higher die costs and yield issues associated with het-
erogeneous retention cells and irregular structures. Further, the µs

retention times used in the prior effort are challenging to achieve in
newer, scaled MTJ dimensions as indicated earlier.

8. CONCLUSIONS
Spin-Transfer Torque RAM (STT-RAM) is a promising candi-

date for future multi-core general purpose and embedded systems,
due to its high-density, low leakage, and immunity to soft errors.
However, its high write latency and dynamic write energy are the
disadvantages compared to SRAM based cache design. In this pa-
per, we propose to trade-off the non-volatility (data-retention time)
for better write performance/energy in STT-RAM cache design. In
this context, we conduct an application-driven study to character-
ize the lifetime of LLC with the intention of using this time as the
optimal retention time for the STT-RAM. We analyze three differ-
ent scenarios for designing the L2 cache: one with 1sec retention
time with write back, second with 10ms retention time with write
back and the third with 10ms retention time with buffering, called
Revived-M-4MB. The results not only indicate that it is possible to
get up to 18% improvement in speedup for PARSEC applications
and 60% reduction in total energy consumption over S-1MB de-
sign, but also show that our proposed design can be within 5% of
the hypothetical case (S-4MB) with an equal capacity SRAM con-
figuration, while being more energy efficient. Furthermore, com-
pared to the prior schemes that are aimed at hiding the high write la-
tency of STT-RAMs, the approach to reduce its write latency seems
to be a better solution for designing a performance and power effi-
cient memory hierarchy for multi-core systems.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their reviews and com-

ments towards improving this paper. This work is supported in
part by NSF grants CNS-0721479, CNS-1152449, CCF-1147388,
CCF-0903432 and DoE grant DE-SC0005026.

10. REFERENCES
[1] C. Bienia. Benchmarking Modern Multiprocessors. PhD

thesis, Princeton University, 2011.
[2] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and

S. Reinhardt. The M5 Simulator: Modeling Networked
Systems. Micro, IEEE, 26(4):52 –60, 2006.

[3] D. Burger, J. R. Goodman, and A. Kägi. Memory bandwidth
limitations of future microprocessors. In ISCA, 1996.

[4] Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen,
L.-C. Wang, and Y. Huai. Spin-transfer torque switching in

magnetic tunnel junctions and spin-transfer torque random
access memory. Journal of Physics 2007.

[5] X. Dong, X. Wu, G. Sun, Y. Xie, H. H. Li, and Y. Chen.
Circuit and microarchitecture evaluation of 3D stacking
magnetic RAM (MRAM) as a universal memory
replacement. In DAC, 2008.

[6] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. NVSim: A
Circuit-Level Performance, Energy, and Area Model for
Emerging Non-Volatile Memory. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

2012.
[7] A. Driskill-Smith. Latest Advances in STT-RAM. In 2nd

Annual NVM Workshop, 2011.
[8] F. Fishburn, B. Busch, J. Dale, D. Hwang, and et al. A 78nm

6F2 DRAM technology for multigigabit densities. In
Proceedings of the Symposium on VLSI Technology, 2004.

[9] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
exploiting generational behavior to reduce cache leakage
power. In ISCA, 2001.

[10] X. Liang, R. Canal, G.-Y. Wei, and D. Brooks. Process
Variation Tolerant 3T1D-Based Cache Architectures. In
MICRO, 2007.

[11] C. Lin, S. Kang, Y. Wang, K. Lee, X. Zhu, W. Chen, X. Li,
W. Hsu, Y. Kao, M. Liu, Y. Lin, M. Nowak, N. Yu, and
L. Tran. 45nm low power CMOS logic compatible embedded
STT MRAM utilizing a reverse-connection 1T/1MTJ cell. In
IEDM, 2009.

[12] A. K. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan,
and C. R. Das. Architecting on-chip interconnects for
stacked 3D STT-RAM caches in CMPs. In ISCA, 2011.

[13] A. Nigam, C. Smullen, V. Mohan, E. Chen, S. Gurumurthi,
and M. Stan. Delivering on the promise of universal memory
for spin-transfer torque RAM (STT-RAM). In ISLPED,
2011.

[14] A. Raychowdhury, D. Somasekhar, T. Karnik, and V. De.
Design space and scalability exploration of 1T-1STT MTJ
memory arrays in the presence of variability and
disturbances. In IEDM, 2009.

[15] C. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and
M. Stan. Relaxing non-volatility for fast and energy-efficient
STT-RAM caches. In HPCA, 2011.

[16] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen. A novel
architecture of the 3D stacked MRAM L2 cache for CMPs.
In HPCA, 2009.

[17] Z. Sun, X. Bi, H. H. Li, W.-F. Wong, Z.-L. Ong, X. Zhu, and
W. Wu. Multi retention level STT-RAM cache designs with a
dynamic refresh scheme. In MICRO, 2011.

[18] C. Xu, D. Niu, X. Zhu, S. Kang, M. Nowak, and Y. Xie.
Device-architecture co-optimization of STT-RAM based
memory for low power embedded systems. In ICCAD, 2011.

[19] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. Energy reduction
for STT-RAM using early write termination. In ICCAD,
2009.

SUPPLEMENTAL

In this supplementary section, we present additional details on STT-
RAM modeling, application properties and refresh schemes. This
section is organized as follows: Sec. S.1 presents the preliminaries
on STT-RAM. Sec. S.2 and Sec. S.3 discusses STT-RAM model-
ing details and simulation results, respectively. Latency and energy
numbers of our STT-RAM and SRAM designs are tabulated in Ta-
ble 3. Sec. S.4 extends the discussion of revival time distribution,
started in Sec. 3, for SPEC 2006 applications. Sec. S.5 describes
the importance of performing a state check before copying the data
back to the buffer. The read and write percentages of our applica-
tions taken from PARSEC 2.1 and SPEC 2006 suites are detailed
in Sec. S.6 and Table 4. Sec. S.7 describes the evaluation metrics
and methodology of collection of results. The sensitivity results to
find the optimal number of MRU slots and buffer size are shown in
Sec. S.8. In Sec. S.9 we compare our refreshing scheme (Revive)
with DRAM-style refresh presented in [15]. Sec. S.10 describes
how our refreshing scheme saves number of write backs leading to
performance improvements. Finally, we conclude our supplemen-
tary section with comparisons to additional prior work (Sec S.11)
and concluding remarks (Sec S.12).

S.1 Preliminaries on STT-RAM
STT-RAM uses an Magnetic Tunnel Junction(MTJ) as the mem-

ory storage and leverages the difference in magnetic directions to
represent a memory bit (“0”/“1” state). As shown in Figure 7, an
MTJ contains two ferromagnetic layers. One ferromagnetic layer
has a fixed magnetization direction and called the reference layer.
The second layer’s magnetic direction can be changed by passing
write current, and, thus it is called the free layer. The relative mag-
netization direction of two ferromagnetic layers determines the re-
sistance of the MTJ. If two ferromagnetic layers have different di-
rections, the resistance of MTJ is high, indicating a “0” state; if
two layers have the same directions, the resistance of MTJ is low,
indicating a “1” state. The current amplitude required to reverse the
direction of the free ferromagnetic layer is determined by the size,
the aspect ratio of MTJ, and the write pulse duration [4, 11].

S.2 STT-RAM Modeling
In this section, we first introduce models to determine the area

of an STT-RAM cell. Typically, the area of each STT-RAM cell
would determine the area of a cache bank composed of these cells
and in turn influence the read/write latency of the bank. As shown
earlier in Figure 7, each 1T1J STT-RAM cell is composed of an
NMOS and one MTJ. The NMOS access device is connected in
series with the MTJ. The size of NMOS is constrained by both
SET and RESET current, which are inversely proportional to the
writing pulse width. In order to estimate the current driving abil-
ity of MOSFET devices, a small test circuit using HSPICE with
PTM 45nm HP model [R3] is simulated. The driving current is ob-
tained by assuming typical TMR (120%) and Low Resistance State
(LRS) (3kΩ) value [11] and wordline voltage to be 1.5V (the opti-
mal value is extracted from [19]). Further, we oversize the access
transistor width to guarantee enough write current is provided to
MTJ using the methodology discussed in [R2]. To achieve high
cell density, we model the STT-RAM cell area by referring to the
DRAM design rules [8]. As a result, the cell size of a STT-RAM
cell is given as:

(4) Areacell = 3 (W/L + 1)(F 2)
where, W and L are the channel width and length of the access
NMOS transistor, respectively.
Thermal Barrier vs. Retention Time As described in Sec. 2.2,
the retention time of an MTJ is largely determined by the thermal

Word line

(WL)

Word line

(WL)

MgO

Free Layer

RHigh
MgO

Free Layer

RLow(a)

(b) (c)

Bit line

Metal interconnect

NMOS

RHigh

Reference LayerReference Layer

STT-RAM cache storage cell

(a)

Figure 7: (a) Structural view of an STT-RAM Cache Cell (b) Anti-Parallel

High Resistance, Indicating “0” state (c) Parallel Low Resistance, Indicating “1”

state

20

30

40

50

60

70

80

1.0E-04 1.0E-02 1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08

T
h

e
rm

a
l

B
a

rr
ie

r
(k

B
T

)

Retention Time (second)

125 C 25 C

Figure 8: MTJ thermal barrier for different retention times

stability of the MTJ. The relationship between retention time (log
scale) and thermal barrier is shown in Figure 8. We observe that
MTJ with higher retention time has higher thermal barrier. For
higher temperature, thermal barrier decreases at a faster rate, lead-
ing to faster reduction in retention time. Since there is a strong
dependency of retention time of MTJ on the operating temperature,
our implementation assumes the worst-case temperature of 125 ◦C
to avoid any possibility of early expiration of block because of sud-
den reduction in STT-RAM retention time.

S.3 STT-RAM Simulation Results
Table 3 shows the architectural parameters based on our STT-

RAM models. It shows the read, write times and energy num-
bers of three stable operating points A, B’, and C’ (shown in Fig-
ure 2) for MTJs with different retention times. We find that a 4MB
NVM STT-RAM cache occupies similar chip area as 1MB SRAM.
This is consistent with previous work [5]. For the leakage simu-
lation, we didn’t apply any power gating techniques for the cache
banks and hence our leakage numbers are higher than the previ-
ously published numbers in recent STT-RAM papers. We observe
that STT-RAM consumes almost half of the leakage power than
that of SRAM. That is basically because of the fact that, half of
STT-RAM die area is occupied by peripheral circuitry, which in
turn means that half of the chip is leaky. The switching energy per
STT-RAM cell is < 1pJ [7] and only half of the total write energy
is consumed on switching the cells. For SRAM numbers, we use
balance L2 design for leakage, density and performance (already
implemented in CACTI).

S.4 Distribution for SPEC 2006 applications
As described in Sec. 3, the revival time is defined as the time

interval between two successive writes. Figure 9 shows the distri-
bution of L2 cache blocks having different revival time intervals.
These results are obtained by running multiprogrammed applica-
tions on the M5 Simulator [2]. We observe that these results are
similar to that of PARSEC 2.1 applications, and we draw similar
conclusions as mentioned in Sec. 3.

Table 3: 16-way L2 cache simulation results

Area Read Latency Write Latency Read Energy Write Energy Leakage Power

(mm2) (ns) (ns) (nJ) (nJ) (mW)

1MB SRAM 2.612 1.012 1.012 0.578 0.578 4542

4MB

t = 10yr 3.003 0.998 10.61 1.035 1.066 2524

t = 1s 2.904 0.973 5.571 1.015 1.036 2235

STT-RAM t = 10ms 2.901 0.959 2.598 1.002 1.028 2227

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

libq. gcc namd AVG.

P
er

ce
nt

ag
e

of
 B

lo
ck

s 40+ ms

40 ms

30 ms

20 ms

10 ms

5 ms

0.11s 0.33s 0.39s 0.36s

Figure 9: Distribution of blocks showing different revival times (value on the

top of a bar show the maximum revival time for that distribution)

S.5 Buffer Architecture
As mentioned in Sec. 4, key idea of our proposal is to copy

important diminishing blocks to a temporary buffer and im-
mediately copy it back to the cache. Since buffering process for a
block starts off in the penultimate state of the counter and not in the
final state as usually would have happened in a typical counter [9],
the data is still valid for incoming reads in the caches. This scheme
cuts the overhead of searching in the buffer. Moreover, it is impor-
tant to note that incoming writes during buffering process will put
back the state of the cache block to S0 making the corresponding
buffer data stale, and hence it is necessary to perform a state check
before copying the buffer data back.

S.6 Application Properties
Table 4 shows the properties of various emerging applications.

Read% denotes the percentage of reads to the L2 cache out of
the total L2 accesses and Write% denotes the percentage of writes
to the L2 cache out of the total L2 accesses. Intensity denotes
Read/Write intensity based on read%/write%.

S.7 Evaluation Metrics
In this section, we describe our evaluation metrics and methodol-

ogy for collection of results. For the multithreaded applications, we
assume 4 threads are mapped to our modeled processor with four
cores. We report normalized speedup for these applications, which
is defined as the improvement over the slowest thread. For the mul-
tiprogrammed SPEC applications, we report Instruction Through-
put and Weighted Speedup. We define instruction throughput (IT)
to be the sum of all the number of instructions committed per cycle
in the entire chip (Eq. (5)). The weighted speedup (WS) is defined
as the slowdown experienced by each application in a multipro-
gram mix, compared to its run under the same configuration when
no other application is running on other cores (Eq.(6)). For analyz-
ing the energy behavior, we measure the leakage energy, dynamic
energy and total energy for all designs.

(5) Instruction throughput =
X

i

IPCi

(6) Weighted speedup =
X

i

IPCshared
i

IPCalone
i

Collection of Results:

We report results of 12 multithreaded applications(Table 4) and

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10111213141516

Nu
m

be
r o

f D
im

in
ish

in
g

Bl
oc

ks
 p

er

Ba
nk

Way #

���� ���

	
� ���

�
��

���

Figure 10: 95% Confidence Intervals of diminishing blocks for each way

14 multiprogrammed mixes (Table 5). We selected these multipro-
grammed mixes from read and write intensive categories (Table 4)
to get varying percentages of reads and writes. We use simsmall
input for mulithreaded applications and report the results of only
Region of Interest, (ROI) (except for facesim, where we report re-
sults for only 2B instructions of ROI) after warming up the caches
for 500M instructions and skipping the initialization and termina-
tion phases. For the multiprogrammed mixes, we fast forward 1B
instructions, warm up caches for 500M instructions and then report
results for 1B instructions.

S.8 Sensitivity Analysis
(A) Sensitivity to number of buffer entries:

The number of buffer entries can affect the performance of the
Revived-M-4MB scheme in two ways: increasing the buffer size
will accommodate more diminishing blocks at a particular instance
and decreasing the buffer size will lead to more buffer overflows.
Increasing the buffer size, leads to fewer buffer overflows, but this
reduction comes at a cost of increase in buffer area and consequent
revival overheads. Decreasing the buffer size eventually leads to
additional write backs (discussed in Sec. 4).

To find the optimal buffer size, we calculate the 95% Confidence
Intervals (CIs) for the cumulative distribution of diminishing blocks
per bank. This is shown in Figure 10. We observe that, for the first
8 MRU slots, the mean value of the buffer entries is 1900 blocks,
which corresponds to a 3% area overhead per L2 cache bank. Up-
per limit of the 95% CI corresponds to 2500 blocks, which repre-
sents 4% area overhead per L2 cache bank. The lower limit of 95%
CI corresponds to 1300 blocks (2% area overhead).

Figure 11(a) shows the normalized speedup to 1300 blocks, with
a subset of applications by varying the number of buffer entries. on
average, varying the number of buffer entries from 1900 to 2500,
results in only 1% speedup improvement. Hence, in all our results,
we used 1900 buffer entries (resulting in a 3% area overhead) with
the best possible performance per area-overhead.
(B) Sensitivity to number of MRU slots:

In order to calculate the optimal MRU slots for buffering, we
collected statistics of MRU positions of diminishing blocks. Fig-
ure 10 shows the average cumulative distribution (mean CDF) of
diminishing blocks per bank as a function of the number of ways
in a set for applications. We observe that the number of diminish-
ing blocks becomes stable after first eight MRU ways. The mean
number of blocks corresponding to the first eight ways is 1900 (3%
overhead over per L2 cache bank), which is a good initial choice

Table 4: Application characteristics of PARSEC 2.1 and SPEC 2006 applications

PARSEC 2.1 Read% Write% Intensity # SPEC 2006 Read% Write% Intensity

1 blackscholes 91.9 8.1 Read 13 bzip2 86.2 13.8 Read

2 bodytrack (btrack.) 92.2 7.8 Read 14 gcc 99.4 0.6 Read

3 dedup 73.8 26.2 Write 15 mcf 94.5 5.5 Read

4 facesim (fcsim.) 78.7 21.3 Read 16 leslie3d 70.7 29.3 Write

5 ferret (frrt.) 46.2 53.8 Write 17 namd 92.7 7.3 Read

6 fluidanimate (fluid.) 82.4 17.6 Read 18 soplex 59.6 40.4 Write

7 freqmine (freq.) 72.1 27.9 Write 19 hmmer 63.6 36.4 Write

8 rtview (rtvw.) 64.1 35.9 Write 20 sjeng 76.6 23.4 Write

9 streamcluster 98.4 1.6 Read 21 libquantum(libq.) 100.0 0.0 Read

10 swaptions (swpts.) 49.9 50.1 Write 22 lbm 15.7 84.3 Write

11 vips 75.0 25.0 Write 23 GemsFDTD 99.2 0.8 Read

12 x264 95.5 4.5 Read 24 omnetpp 97.7 2.3 Read

25 h264ref 57.8 42.2 Write

Table 5: SPEC 2006 multiprogrammed

mixes
Mixes Applications

mix-1 mcf, leslie3d, bzip2, gcc

mix-2 mcf, gcc, bzip2, namd

mix-3 hmmer, sjeng, gcc, bzip2

mix-4 bzip2, lbm, hmmer, gcc

mix-5 gcc, GemsFDTD, omnetpp, bzip2

mix-6 bzip2, gcc, omnetpp, h264ref

mix-7 h264ref, bzip2, leslie3d, gcc

mix-8 gcc, sjeng, mcf, bzip2

mix-9 leslie3d, gcc, bzip2, hmmer

mix-10 sjeng, omnetpp, gcc, bzip2

mix-11 bzip2, gcc, mcf, hmmer

mix-12 bzip2, leslie3d, gcc, sjeng

mix-13 gcc, hmmer, GemsFDTD, bzip2

mix-14 namd, bzip2, h264ref, gcc

0.8

0.9

1

1.1

1.2

dedup frrt. fluid. freq. rtvw. vips x264 AVG.

N
or

m
al

iz
ed

 S
pe

ed
up

1300 1900 2500

0.8

0.9

1

1.1

1.2

1.3

1.4

dedup frrt. fluid. freq. rtvw. vips x264 AVG.

N
or

m
al

iz
ed

 S
pe

ed
up

4 8 12

(a) Buffer Entries (b) MRU Slots.

Figure 11: Speedup as a function of number of buffer entries and MRU Slots

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

btrack. dedup rtvw. vips x264 AVG.

Figure 12: Energy impacts of Revive refresh scheme as a percentage of

DRAM-style refresh

for the buffer size.
We find that after 8 MRU slots, the number of diminishing blocks

saturates, which suggests that the optimal number of MRU slots is
8. Figure 11(b) shows speedup of a subset of applications along
with the average across all mulithreaded applications, with varying
number of MRU slots. Buffer size is kept constant at 1900 per bank.
We see degradation in performance when we decrease the number
of slots from 8 to 4, since buffering 8 MRU slots would have cov-
ered more frequently used blocks and hence, reducing write backs
of useful blocks. We also see degradation in performance by in-
creasing the number of slots from 8 to 12. This is because, with a
constant buffer size, 12 MRU slots increase the probability of buffer
overflows, which increases the write backs leading to performance
degradation.

S.9 Comparison to DRAM-style refresh
In this section, we compare our scheme, Revive, with the DRAM

style in-place refresh scheme proposed in [15]. DRAM style in-
place refresh unnecessarily refreshes every block in the LLC after
every 10ms, leading to high refresh overheads. In our selective
buffering scheme we try to minimize the number of refreshes re-
quired. Figure 12 shows the energy comparisons of our revive re-
fresh scheme as a percentage of DRAM-style refresh scheme pro-
posed in [15]. Since, our scheme only refreshes a small number
of required blocks as opposed to all the LLC blocks, on average,

it consumes only 4% of energy compared to the DRAM-style re-
fresh. For the same reason, our scheme results in less than 90%
of performance penalty taking into our observation that about 10%
of the total diminishing blocks need to be written back to the main
memory. Although our scheme has 4% buffer area overhead, the
significant refreshing benefits obtained justifies our design. More-
over, refreshing benefits will diminish radically if it is done at µs

level [15], and hence our ms proposal helps in sustaining the en-
ergy benefits.

S.10 Boosting Performance by saving number
of write backs

In this section, we describe how reducing the number of write
backs can boost the performance. Since our scheme proposes to
retain the useful blocks (not writing back) in the cache after their
expiration time by copying them to a temporary buffer and copying
it back, it is important to see how many write backs our scheme is
able to save. Figure 13 shows the number of write backs of all the
designs normalized to M-4MB. We observe that the 4MB, 10ms
retention time STT-RAM design, on average, has 21x more write
backs than the traditional STT-RAM design. This leads to signifi-
cant performance degradation across most applications when com-
pared to simply using a 10years retention time STT-RAM cache
(8% performance degradation on average). For instance, in vips,
there is about 20% speedup degradation over M-4MB. It is inter-
esting to see the case of swaptions, where there is a slight im-
provement in speedup over M-4MB, although there is an increase
in the number of write backs. The reason for this improvement is
due to the fact that the majority of blocks that are not refreshed
within 10ms interval, are not accessed in future as well leading to
a low number of read misses. This helps in reaping benefits from
the reduced write latency.

S.11 Additional Prior Work
Sun et al. [16] showed that write buffers can be helpful in hiding

the long write latencies of STT-RAM banks. Our analysis shows
that, if an application is bursty, write-buffers fail to hide this la-

0
M-4MB Volatile M-4MB(1sec) Volatile M-4MB(10ms) Revived-M-4MB(10ms)

0

1

2

3

4

5

6

7

dedup freq. rtvw. swpts. x264 frrt. fcsim. vips fluid. AVG.

No
rm

al
ize

d
W

rit
e

Ba
ck

s

21 11 21

0

0.5

1

1.5

2

AVG. (SPEC 2006)

N
o

rm
a

liz
e

d
 W

ri
te

b
a
c
k
s

(a) PARSEC 2.1 applications (b) Average across multiprogrammed mixes

Figure 13: Number of write backs normalized to M-4MB

tency and are rendered in-effective. Out of 25 applications, we
found 12 applications to be write intensive and bursty and hence,
write-buffering is ineffective for these applications. Moreover, all
our results are conservative since we have already assumed a 10-
entry (as used in [16]) write-buffer at every STT-RAM bank and
our results would be significantly better without the presence of
write-buffers.

In a recent work [12], the authors have proposed a network level
solution to hide the write latency of STT-RAM banks. This solu-
tion requires complex busy/idle bank detection followed by prior-
itization mechanisms in the network. On a qualitative basis, the
network level solution to hide write latency in [12] was shown as
the most promising technique compared to any other techniques.
The application level performance improvement with this scheme
was about 2-4% higher compared to the write buffering technique
of Sun et al. [16]. Contrasting this to our work, our scheme pro-
vides about 15%/4%(PARSEC IPC/SPEC weighted-speedup) im-
provement over 10years traditional STT-RAM, on top of the write
buffering scheme, thereby making it more attractive compared to
[12]. Overall, we believe that no prior work makes a case for tuning
the retention time of STT-RAM banks based on profiling retention
duration of LLC blocks of applications, which our proposal does.

The 3T1D designs proposed in [R1] has typical worst-case re-
tention time in µs region, which makes it incompatible for our LLC
design that needs ms retention time. Increasing the retention time
of 3T1D cell to ms region will enlarge the size of the gated-diode
or will increase the threshold voltage of the access transistor. These
choices will incur significant area overhead or performance degra-
dation for our cache design, respectively.

In regard to eDRAM, it also has similar density advantages but
has at least 2x higher leakage than STT-RAM. Moreover, eDRAM
is considered to have scalability challenges in sub-45nm process
nodes due to the difficulty of precise charge placement and data
sensing. STT-RAM is believed to at least scale beyond 10nm tech-
nology [7]. The retention time of eDRAM is in microseconds mak-
ing it unsuitable for our design. (We claim the retention time to be
in milliseconds). Also, the refresh energy overheads of eDRAM is
much higher.

A few other prior works have also proposed architectural and
circuit level solutions to handle this long write latency problem in
STT-RAMs. Architectural techniques such as early write termi-
nation [19], hybrid SRAM/STT-RAM architecture [16] and read-
preemptive write-buffer designs have been shown to mitigate write
latency/energy. The circuit level techniques such as eliminating re-
dundant bit-writes [19] and data inverting technique [16] have also
been shown to be effective in hiding the long write latency. In con-
trast to all these prior works that attempt to hide the write latency,
our scheme investigates techniques to actually reduce the write la-
tency of STT-RAM banks and make their write latency comparable
to SRAM banks. When compared to Zhou et al.’s work [19] that re-
quire additional gates for detection and termination of writes inside

each STT-RAM sub-bank, our techniques are simpler to implement
since our proposal works at a much coarser granularity.

Unlike recent STT-RAM papers that assume that the non-active
STT-RAM banks are power gated, we conservatively assume that
these banks leak. Consequently, our absolute leakage numbers are
larger.

S.12 Concluding Remarks
Spin-Transfer Torque RAM (STT-RAM) is an emerging non-

volatile memory (NVM) technology that has the potential to re-
place the conventional on-chip SRAM caches for designing a more
efficient memory hierarchy for multi-core architectures. Although
the high density, low leakage and high endurance are attractive
features of STT-RAM, the latency and energy overhead associ-
ated with write operations are major obstacles for being compet-
itive with the SRAM. Our study showed that the non-volatility fea-
ture with years of data-retention time for STT-RAM technology
is not necessary for its usage in on-chip cache, since the refresh
times of cache data are usually in µs (for L1 cache) or ms (for
L2 cache) range. Thus, we proposed to trade-off the non-volatility
(data-retention time) of STT-RAM for better write performance and
energy for designing STT-RAM-based L2 cache. The paper ad-
dressed several critical design issues such as how we decide on a
suitable retention time for last level cache, what the relationship
between retention time and write latency is, and how we archi-
tect the cache hierarchy with volatile STT-RAM. We studied two
data-retention time relaxation cases, one with data-retention time
of 1sec, which satisfies the refresh time requirement of typical
cache blocks; and the other one with data-retention time of 10ms,
which is a more aggressive design for better performance and en-
ergy gains, but required a data refreshing mechanism. For the ag-
gressive 10ms retention time design, we proposed a selective block
refreshing scheme for the cache blocks that have a higher refresh
time than the STT-RAM retention time to avoid any data loss. Our
experiments with a four-core architecture with an SRAM-based L1
cache and volatile STT-RAM-based L2 cache indicated that not
only we can eliminate the long write latency overhead of the NVM
STT-RAM, but also can provide on an average 18% improvement
in performance compared to the traditional SRAM-based design,
while reducing the energy consumption by 60%.

S. REFERENCES
[R1] L. Xiaoyao, C. Ramon, W. Gu-Yeon, and B. David.

Replacing 6T SRAMs with 3T1D DRAMs in the L1 Data
Cache to Combat Process Variability. IEEE Micro 2008.

[R2] W. Xu, H. Sun, X. Wang, Y. Chen, and T. Zhang. Design of
last-level on-chip cache using spin-torque transfer RAM (STT
RAM). IEEE TVLSI, 2011.

[R3] W. Zhao and Y. Cao. New generation of predictive
technology model for sub-45 nm early design exploration.
IEEE TED, 2006.

