
Layer-wise Performance Bottleneck Analysis of
Deep Neural Networks

Hengyu Zhao, Colin Weinshenker*, Mohamed Ibrahim*, Adwait Jog*, Jishen Zhao
University of California, Santa Cruz, *The College of William and Mary

hzhao28@ucsc.edu

Abstract—Deep neural networks (DNNs) are becoming the
inevitable part of a wide range of applications domains, such
as visual and speech recognition. Recently, Graphics Processing
Units (GPUs) are showing great success in helping meet the
performance and energy efficiency demands of DNNs. In this
paper, we identify GPU performance bottlenecks via character-
izing the data access behaviors of AlexNet and VGG16 models
in a layer-wise manner. The goal of this work is to find the
performance bottlenecks of DNNs. We obtain following findings:
(i) Backward propagation is more performance critical than
forward propagation. (ii) The working set of convolutional inter-
layers does not fit in L1 cache, while convolutional input layer
can exploit L1 cache sufficiently. (iii) Interconnect network can
also be a performance bottleneck that substantially increase GPU
memory bandwidth demand.

I. INTRODUCTION

Deep neural networks (DNNs) are finding their way into
increasingly wider range of application domains, such as visual
recognition [1], speech recognition [2], and natural language
processing [3]. Deep learning has two phases: training and
inference – inference leverages the trained neural network
to infer things about new data it is presented with. As a
result, training DNNs typically has much higher demand for
compute power than inference and is becoming increasingly
data intensive with larger, deeper training models. In fact,
graphic processing units (GPUs) are extensively used in the
training of modern DNN models, due to their tremendous
compute horsepower and strong backend support for DNN
software libraries such as cuDNN [4].

With DNN, larger and deeper neural networks with more
parameters typically result in better accuracy. Yet, this also
substantially increases the hardware demand on both compute
power and data access efficiency. In order to maintain a
reasonable training performance with the continuous scaling of
DNN models, it is critical to ensure that future GPU systems
can keep up with the increase of the hardware demand.

Our goal in this paper is to investigate the performance
bottlenecks during training of DNNs in commodity GPU
hardware. To this end, we make efforts toward characterizing
the performance of DNN models on GPU systems. First, we
analyze the performance of two popular ImageNet models –
AlexNet [1] and VGG-16 [5] – built with Caffe [6] deep
learning framework on one of the latest graphics card product.
Second, we examine layer-wise execution time, stall reasons,
cache access behavior, and memory bandwidth utilization of

Fig. 1: DNN architecture.

the two ImageNet models. This paper makes the following
contributions:
• We build a layer-wise model for training VGG-16 and

AlexNet on GPUs.
• We identify GPU performance bottlenecks in compute and

cache resources, by characterizing the performance and data
access behaviors of AlexNet and VGG-16 models in a layer-
wise manner.

II. DEEP NEURAL NETWORKS (DNNS)

DNNs are combined with several different types of layers,
such as convolutional layers, activation layers, pooling layers,
and fully connected layers. Typically, these layers can be
divided into two categories: (i) feature extraction layers that
extract input features and (ii) classification layers that analyze
features and classify input images into groups. DNNs have
two stages: training and inference. Training allows DNNs to
learn and update weights of each layer. Training of DNNs
typically performs both forward propagation and backward
propagation [7] to generate weights. As a result, training
phase is typically much more compute and data intensive
than inference phase. As such, this paper focuses on studying
training phase. As the name implies, the traverse direction is
in reverse between forward and backward propagation. When
training a DNN model, we can divide input images into several
sets that are processed independently. Each set of images is
called a batch.

Figure 1 shows a typical DNN architecture. In this paper, we
evaluate AlexNet and VGG-16, which are two popular deep
learning models used in image classification. The two models
share the similar layout of neural network layers as shown in
Figure 1. AlexNet has five convolutional layers, while VGG16
adopts a deeper neural network with 13 convolutional layers.
DNN Training. Training is necessary for DNNs before we
use them to do certain tasks. During the training phase, lots
of weights of every layer need to be updated real-timely by
performing forward and backward propagation.



Forward propagation. In Figure 1, when performing forward
propagation, several feature vectors are passed to the input
layer. Each layer multiplies its inputs(x) by the weight matrix
connecting and outputs y to the next layer. A non-linear
transformation (e.g., a sigmoid or rectified linear unit function)
is applied to the result. This process is repeated, propagating
the input signal through the network. The transformed signal
that reaches the output layer is interpreted as an encoded
output – an image classification, for example.
Backward propagation. In Figure 1, in the backward prop-
agation phase, the correct output for the given input is used
with a loss function to compute the error of the network’s
prediction. Seeking derivative from the latter layer with input
gradient map(dY) to the former layer with output gradient
map(dX). A simple squared error function can suffice.

E =
1

2

n∑
i=0

(ti − yi)
2

Where E is the sum of the network’s prediction error over
all n training examples in the training set, ti is the true label for
input sample i, and yi is the network’s predicted classification
for input i.

After determining the prediction error on an observation,
the weights of the network are updated. The functions by
which the inputs determine the error of the network and their
gradients with respect to the network’s last predicted output
are known. Thus the chain rule can be applied to each function
in the network to create a map of how network error changes
with respect to any individual weight [8], [9]. Network weights
are then updated to improve network performance for the last
seen observation.

To train a neural network practically, we can feed it a labeled
“training” dataset (i.e., a dataset consisting of input features
and known correct outputs). For each input, the error of the
network’s output is computed. After summing the error over a
certain number of observations (referred to as the mini-batch
size), the weights are updated. Over many updates, the weights
in a network form a relationship between the probability
distribution of the model and the probability distribution of
the underlying data.

III. EXPERIMENTAL SETUP

A. Workloads

AlexNet. AlexNet [1] is a type of neural network to do
image classification tasks using ImageNet dataset. It has five
convolutional layers, three pooling layers and three fully
connected layers.
VGG-16. VGG-16’s [5] main task is also to do image classi-
fication and localization, but it has more layers than AlexNet.
It has thirteen convolutional layers and three fully connected
layers.
Datasets. ImageNet is a huge image dataset which contains
millions of images belong to thousands of categories. Begin
at 2010, ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) has been held annually. ILSVRC exploits a subset

TABLE I: System configuration.

CPU Intel Xeon E5-2620 V3@2.4GHz
Main memory 16GB DDR4

Operating system Ubuntu 16.04.2

GPU NVIDIA GeForce GTX 1080 Ti (Pascal)
GPU cores 28 SMs, 128 CUDA cores per SM, 1.5GHz
L1 cache 24KB per SM
L2 cache 4096KB

Memory interface 8 memory controllers, 352-bit bus width
GPU main memory 11GB GDDR5X

of ImageNet with 1.3 million training images, 50000 valida-
tion images, 150000 testing images in 1000 categories. We
evaluate ImageNet with four different batch size: 32, 64, 128,
and 256. We measure the performance for 100 iterations when
training.
Framework. Caffe [6] is a popular deep learning framework,
which is produced by Berkeley AI Research.

B. Real Machine Configuration

We run AlexNet and VGG-16 on GTX 1080Ti graphic card
with Dell Precision T7810 Tower Workstation. GTX 1080Ti
combines L1 cache and texture cache together as unified cache,
so we show unified cache performance (note that we denote it
as L1 cache in our results sections). We conducted experiments
on Nvidia’s GTX 1080Ti graphic card, which has 3584 cuda
cores, 11GB memory capacity, 484 GB/s memory bandwidth,
and Pascal architecture. Table I lists our system configuration.

IV. REAL MACHINE CHARACTERIZATION

In this section, we characterize AlexNet and VGG-16 on
real GPU hardware. In order to explore GPU system perfor-
mance bottlenecks and the criticality of various architecture
components, we analyze the execution time, data operations,
and cache and memory access behaviors of each neural
network layers across various image input batch sizes. We also
show several key observations of our analysis on the major
computational kernels executed in each layer.

A. Execution Time and Instruction Distribution

Figure 2 through Figure 4 explore a layer-wise performance
landscape of our workloads.
Layer-wise execution time. Figure 2 shows our evaluation
of execution time breakdown in various ways. While the
overall trend of execution time (Figure 2(a) and (d), (e)) is
inline with most previous studies on the same workloads [10],
[11], we make four observations from our experiments. First,
convolutional (CONV) layers execute for much longer time
than fully connected (FCN) layers. Second, CONV inter-
layers dominate the execution time of all CONV layers;
these inter-layers also execute more instructions than other
layers (Figure 3(a), Figure 4(a)). Third, execution time and
instruction count increases as we increase the batch size from
32 to 256. Finally, with both CONV and FCN layers, the
execution time of backpropagation can be over 2× of forward

2



propagation. What is more, the computation latency ratio of
VGG-16 is larger than AlexNet. (Figure 2(d), (e)) [10], [11].
Findings: Our results show that (1) CONV inter-layers domi-
nate both execution time and instruction count; (2) backpropa-
gation is more performance critical than forward propagation.
Stalls due to data access. CONV layers are typically con-
sidered as much more compute-intensive than FCN layers.
However, we identify three observations that speaks for the
volume of the performance impact of data access. First,
Figure 2(c) shows that data access imposes substantial stalls
during the execution time. Such stalls stay above 30% of
total stalls across various batch sizes, even among the most
compute-intensive CONV layers with the lowest load/store
instruction ratios shown in Figure 3(b) and Figure 4(b). In
fact, based on Figure 2(b) and (c), data stall time of CONV
inter-layers can be up to 38% longer than FCN layers. Second,
the number of stalls increase as we increase batch size. This
is consistent with our observation on GPU main memory
access, where the number of main memory requests scales up
almost linearly with image batch size. Finally, because CONV
inter-layers execute much more instructions than FCN layers
(Figure 3(a), Figure 4(a)), these inter-layers can generate more
data requests despite less data intensive than FCN layers.
Findings: Based on our investigation on stall time and instruc-
tion breakdown, data access – which is performed along the
path of caches, interconnect network, and memory interface –
is performance critical to both CONV inter-layers and FCN
layers.

B. Cache Access Behavior

To study the performance impact of data access in caches,
we characterize read and write access behaviors in GPU cache
hierarchy.
L1 cache access behavior. To study L1 cache access behavior,
we evaluate the access throughput (GB/s) and layer-wise hit
rates as shown in Figure 5 and Figure 6. We make four
observations. First, CONV inter-layers have much lower L1
cache access throughput than other layers, despite issuing
much more L1 accesses (with the load and store instructions
based on Figure 3 and Figure 4). Second, CONV inter-layers
have much lower L1 hit rate than other layers. This observation
is consistent with the long data access stall time of these
layers. The reason can be either or both of the two: a) their
working set does not fit in L1 caches; b) they have low data
access locality (our later evaluation on L2 access behavior
demonstrates that this is not the case). Third, CONV input
layer (CONV1) has a high L1 hit rate, but L1 hit rate drops
in as CONV layers get deeper. Finally, L1 throughput and
hit rate appear stable across various batch sizes with CONV
layers. While FCN layers also have stable L1 hit rates as the
batch size alters, L1 throughput significantly increases when
the batch size is increased from 32 to 64. We notice that
executed cuDNN kernels are changed when we change the
batch size between the two.
Findings: As such, we conclude that 1) the working set of
CONV inter-layers do not fit in L1 cache, while CONV input

layer can utilize L1 cache effectively; 2) L1 cache access
behavior remains stable across various batch sizes.
L2 cache access behavior. Due to CONV inter-layer’s low
hit rate in L1 caches, L2 cache can be performance critical
to these layers. We make several observations based on our
L2 cache access evaluation shown in Figure 7 and Figure 8.
First, most CONV inter-layers generate similar read and write
throughput with L2 cache, while yield high read hit rates (on
average 68%) and lower write hit rates (on average 45%).
Second, we notice that tensor add and convolution are the
two most time consuming operations executed in these layers.
In particular, tensor add yields almost 0% read hit rate but
high write hit rate in L2 cache, whereas the read/write hit
rates of convolution appears completely in reverse. Tensor add
adds the scaled values of a bias tensor to another tensor and
writes the result to a third tensor. With nearly 0% read hit rate,
the two tensors are always not in the cache. The convolution
operation takes an input image and a convolution kernel and
write the convoluted result to another memory location. As
such, this operation always misses when it writes to the new
memory locations. Third, CONV input and FCN layers yield
much higher read than write throughput. With each layer, the
overall L2 throughput is similar to L1 cache and remains
similar with various batch sizes. Because the change of the
kernels in FCN layers mainly impacts read operations, L2
write throughput remains stable when we increase batch size
from 32 to 64. Finally, FCN layers have much higher write
hit rates than reads, whereas CONV layers are in reverse.
Findings: It appears that CONV inter-layers yield much higher
hit rates in the 4MB L2 cache than the 24KB L1 caches.
As such, these layers have sufficient locality, especially with
read requests, if the GPU can integrate large caches to ac-
commodate their working set. Furthermore, given FCN layer’s
low write throughput yet high write hit rates, L2 cache can
efficiently accommodate write requests of FCN layers.

C. Memory Bandwidth Demand

As shown in Figure 9 and Figure 10, GPU off-chip memory
bandwidth demand is consistent with L2 cache misses. In
particular, CONV inter-layers generates more write traffic on
the memory bus than reads. Due to the high L2 write hit rates
of FCN layers, a substantial portion of off-chip memory traffic
is reads.

V. RELATED WORK

To the best of our knowledge, this is the first work that
characterizes performance and cache behaviors of DNNs on
commodity GPU systems in a layer-wise manner. In this
section, we describe previous studies that are closely related
to ours.

Virtualized DNN (vDNN) [10] proposes a runtime memory
manager that virtualizes the memory usage of DNNs such that
both GPU and CPU memory can simultaneously be utilized for
training larger DNNs. The GPU performance characteristics
of five popular deep learning frameworks: Caffe, CNTK,
TensorFlow, Theano, and Torch in AlexNet has been analyzed

3



25%

35%

45%

55%

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

FC
N

1

FC
N

2

FC
N

3

D
at

a 
St

al
ls

0
1
2
3
4

0
10
20
30
40
50
60
70
80
90

100

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

FC
N

1

FC
N

2

FC
N

3

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Batch size=32 Batch size=64 Batch size=128 Batch size=256

(a) (b)

(c)

N
o

rm
al

iz
e

d
 

St
al

l T
im

e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

FC
N

1

FC
N

2

FC
N

3C
o

m
p

u
ta

ti
o

n
 L

at
e

n
cy

 R
at

io (d)
10

1

(e)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

C
O

N
V

6

C
O

N
V

7

C
O

N
V

8

C
O

N
V

9

C
O

N
V

1
0

C
O

N
V

1
1

C
O

N
V

1
2

C
O

N
V

1
3

FC
N

1

FC
N

2

FC
N

3

Fig. 2: AlexNet (a) Execution time and (b) total stall time normalized to CONV1 layer with a batch size of 32. (c) Percentage of stalls due
to data access in AlexNet. (d) Backpropagation to forward propagation computation latency ratio with a 256 batch size in (d) AlexNet and
(e) VGG-16.

0%	
5%	

10%	
15%	
20%	
25%	
30%	
35%	

CO
N
V1

	

CO
N
V2

	

CO
N
V3

	

CO
N
V4

	

CO
N
V5

	

FC
N
1	

FC
N
2	

FC
N
3	

Pe
rc
en

ta
ge
	o
f	L
ad

/S
to
re
	

In
st
ru
c3
on

s�

0	

20	

40	

60	

80	

100	

120	

CO
N
V1

	

CO
N
V2

	

CO
N
V3

	

CO
N
V4

	

CO
N
V5

	

FC
N
1	

FC
N
2	

FC
N
3	

N
or
m
al
iz
ed

	E
xe
cu
te
d	
In
st
ru
c3
on

s� Batch	size=32	 Batch	size=64	 Batch	size=128	 Batch	size=256	

(a)	 (b)	

Fig. 3: (a) The number of total executed instructions and (b)
percentage of load and store instructions in AlexNet (normalized to
CONV1 layer with batch a size of 32).

6/10/2017 5

0%

5%

10%

15%

20%

25%

30%

35%

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

C
O

N
V

6

C
O

N
V

7

C
O

N
V

8

C
O

N
V

9

C
O

N
V

1
0

C
O

N
V

1
1

C
O

N
V

1
2

C
O

N
V

1
3

FC
N

1

FC
N

2

FC
N

3

P
e

rc
e

n
ta

ge
 o

f 
Lo

ad
/S

to
re

 
In

tr
u

ct
io

n
s

0
10
20
30
40
50
60
70
80
90

100

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

C
O

N
V

6

C
O

N
V

7

C
O

N
V

8

C
O

N
V

9

C
O

N
V

1
0

C
O

N
V

1
1

C
O

N
V

1
2

C
O

N
V

1
3

FC
N

1

FC
N

2

FC
N

3

N
o

rm
al

iz
e

d
 E

xe
cu

te
d

 In
st

ru
ct

io
n

s

Batch size=32 Batch size=64 Batch size=128 Batch size=256

(a) (b)

Fig. 4: (a) The number of total executed instructions and (b)
percentage of load and store instructions in VGG-16 (normalized to
CONV1 layer with batch a size of 32).

0	
50	

100	
150	
200	
250	
300	
350	

CO
N
V1

	

CO
N
V2

	

CO
N
V3

	

CO
N
V4

	

CO
N
V5

	

FC
N
1	

FC
N
2	

FC
N
3	

L1
	C
ac
he

	T
hr
ou

gh
pu

t	(
GB

/s
)� Batch	size=32	 Batch	size=64	 Batch	size=128	 Batch	size=256	

20%	
30%	
40%	
50%	
60%	
70%	
80%	

CO
N
V1

	

CO
N
V2

	

CO
N
V3

	

CO
N
V4

	

CO
N
V5

	

FC
N
1	

FC
N
2	

FC
N
3	

L1
	C
ac
he

	H
it	
Ra

te
�(a)	 (b)	

Fig. 5: L1 cache (a) throughput and (b) hit rate of each layer
in AlexNet.

in [11], and this paper also evaluates the GPU performance
characteristics of four different convolution algorithms and
suggest criteria to choose proper convolutional algorithms to
build efficient deep learning model. Efficient inference engine
(EIE) [12] performs inference on the compressed network
model and accelerates the resulting sparse matrix-vector mul-
tiplication with weight sharing. Jia et.al demonstrate that GPU
caches can be detrimental to the performance of many GPU
applications and characterize the impact of L1 caches on the

0

50

100

150

200

250

300

350

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

C
O

N
V

6

C
O

N
V

7

C
O

N
V

8

C
O

N
V

9

C
O

N
V

1
0

C
O

N
V

1
1

C
O

N
V

1
2

C
O

N
V

1
3

FC
N

1

FC
N

2

FC
N

3

L1
 C

ac
h

e
 T

h
ro

u
gh

p
u

t(
G

B
/s

)

Batch size=32 Batch size=64 Batch size=128 Batch size=256

0%

10%

20%

30%

40%

50%

60%

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

C
O

N
V

6

C
O

N
V

7

C
O

N
V

8

C
O

N
V

9

C
O

N
V

1
0

C
O

N
V

1
1

C
O

N
V

1
2

C
O

N
V

1
3

FC
N

1

FC
N

2

FC
N

3

L1
 C

ac
h

e
 H

it
 R

at
e

(a) (b)

Fig. 6: L1 cache (a) throughput and (b) hit rate of each layer
in VGG-16.

performance of the Rodinia suite benchmarks. However, they
also show that fully-connected neural network backpropaga-
tion benefits significantly from added cache [13]. Tian et.
al propose techniques for having memory that is unlikely to
benefit from temporal locality bypass GPU cache [14]. Singh
et.al and Wang et. al pursue better cache performance through
cache coherence policies [15], [16].

VI. CONCLUSION

We perform a layer-wise characterization of a set of DNN
workloads that execute on commodity GPU systems. By
investigating layer-wise cache and memory access behavior,
we draw the following observations:
• The execution time of convolutional inter-layers dominates

the total execution time. In particular, backpropagation of
these inter-layers consumes significantly longer execution
time than forward propagation.

• The working set of convolutional inter-layers does not fit
in L1 cache, while convolutional input layer can exploit L1
cache sufficiently.

• Interconnect network can also be a performance bottleneck
that substantially increase GPU memory bandwidth demand.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” in Advances
in neural information processing systems, pp. 1097–1105, 2012.

[2] O. Abdel-Hamid, A.-R. Mohamed, and H. Jiang et al., “Con-
volutional neural networks for speech recognition,” IEEE/ACM
Trans. Audio, Speech and Lang. Proc., vol. 22, pp. 1533–1545,
Oct. 2014.

4



0	
50	
100	
150	
200	
250	
300	
350	
400	
450	
500	

CO
N
V1

	

CO
N
V2

	

CO
N
V3

	

CO
N
V4

	

CO
N
V5

	

FC
N
1	

FC
N
2	

FC
N
3	

L2
	R
ea
d	
Th

ro
ug
hp

ut
	(G

B/
s)
� Batch	size=32	 Batch	size=64	 Batch	size=128	 Batch	size=256	

40%	
45%	
50%	
55%	
60%	
65%	
70%	
75%	

CO
N
V1

	

CO
N
V2

	

CO
N
V3

	

CO
N
V4

	

CO
N
V5

	

FC
N
1	

FC
N
2	

FC
N
3	

L2
	R
ea
d	
Hi
t	R

at
e�

0	

50	

100	

150	

200	

CO
N
V1

	

CO
N
V2

	

CO
N
V3

	

CO
N
V4

	

CO
N
V5

	

FC
N
1	

FC
N
2	

FC
N
3	

L2
	W

rit
e	
Th

ro
ug
hp

ut
	(G

B/
s)
�

40%	
45%	
50%	
55%	
60%	
65%	
70%	
75%	
80%	
85%	
90%	

CO
N
V1

	

CO
N
V2

	

CO
N
V3

	

CO
N
V4

	

CO
N
V5

	

FC
N
1	

FC
N
2	

FC
N
3	

L2
	W

rit
e	
Hi
t	R

at
e�(a) (b) (c) (d) 

Fig. 7: L2 cache (a) read throughput, (b) read hit rate, (c) write throughput, and (d) write hit rate of each layer in AlexNet.

0%

10%

20%

30%

40%

50%

60%

70%

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

C
O

N
V

6

C
O

N
V

7

C
O

N
V

8

C
O

N
V

9

C
O

N
V

1
0

C
O

N
V

1
1

C
O

N
V

1
2

C
O

N
V

1
3

FC
N

1

FC
N

2

FC
N

3

L2
 R

e
ad

 H
it

 R
at

e

0%

20%

40%

60%

80%

100%

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

C
O

N
V

6

C
O

N
V

7

C
O

N
V

8

C
O

N
V

9

C
O

N
V

1
0

C
O

N
V

1
1

C
O

N
V

1
2

C
O

N
V

1
3

FC
N

1

FC
N

2

FC
N

3

L2
 W

ri
te

 H
it

 R
at

e

0

50

100

150

200

250

300

350

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

C
O

N
V

6

C
O

N
V

7

C
O

N
V

8

C
O

N
V

9

C
O

N
V

1
0

C
O

N
V

1
1

C
O

N
V

1
2

C
O

N
V

1
3

FC
N

1

FC
N

2

FC
N

3L2
 R

e
ad

 T
h

ro
u

gh
p

u
t(

G
B

/s
)

Batch size=32 Batch size=64 Batch size=128 Batch size=256

0

50

100

150

200

250

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

C
O

N
V

6

C
O

N
V

7

C
O

N
V

8

C
O

N
V

9

C
O

N
V

1
0

C
O

N
V

1
1

C
O

N
V

1
2

C
O

N
V

1
3

FC
N

1

FC
N

2

FC
N

3L2
 W

ri
te

 T
h

ro
u

gh
p

u
t(

G
B

/s
)

(a) (b) (c) (d)

Fig. 8: L2 cache (a) read throughput, (b) read hit rate, (c) write throughput, and (d) write hit rate of each layer in VGG-16.

0	
20	
40	
60	
80	

100	
120	
140	
160	

CO
N
V1

	

CO
N
V2

	

CO
N
V3

	

CO
N
V4

	

CO
N
V5

	

FC
N
1	

FC
N
2	

FC
N
3	Re

ad
	T
hr
ou

gh
pu

t	(
GB

/s
)�

Batch	size=32	 Batch	size=64	 Batch	size=128	 Batch	size=256	

0	
20	
40	
60	
80	

100	
120	
140	
160	
180	

CO
N
V1

	

CO
N
V2

	

CO
N
V3

	

CO
N
V4

	

CO
N
V5

	

FC
N
1	

FC
N
2	

FC
N
3	W
rit
e	
Th

ro
ug
hp

ut
	(G

B/
s)
�

(a)	 (b)	

Fig. 9: GPU main memory (a) read and (b) write throughput
of each layer in AlexNet.

6/10/2017 4

0

50

100

150

200

250

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

C
O

N
V

6

C
O

N
V

7

C
O

N
V

8

C
O

N
V

9

C
O

N
V

1
0

C
O

N
V

1
1

C
O

N
V

1
2

C
O

N
V

1
3

FC
N

1

FC
N

2

FC
N

3

W
ri

te
 T

h
ro

u
gh

p
u

t(
G

B
/s

)

0

50

100

150

200

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

4

C
O

N
V

5

C
O

N
V

6

C
O

N
V

7

C
O

N
V

8

C
O

N
V

9

C
O

N
V

1
0

C
O

N
V

1
1

C
O

N
V

1
2

C
O

N
V

1
3

FC
N

1

FC
N

2

FC
N

3

R
e

ad
 T

h
ro

u
gh

p
u

t(
G

B
/s

)

Batch size=32 Batch size=64 Batch size=128 Batch size=256

(a) (b)

Fig. 10: GPU main memory (a) read and (b) write throughput
of each layer in VGG-16.

[3] R. Collobert, J. Weston, and L. Bottou et al., “Natural language
processing (almost) from scratch,” J. Mach. Learn. Res., vol. 12,
pp. 2493–2537, Nov. 2011.

[4] “NVIDIA, cuDNN: GPU accelerated deep learning,” 2016.
[5] K. Simonyan and A. Zisserman, “Very deep convolutional

networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[6] Y. Jia, E. Shelhamer, and J. D. et al., “Caffe: Convolu-
tional architecture for fast feature embedding,” arXiv preprint
arXiv:1408.5093, 2014.

[7] Y. LeCun, L. Bottou, and Y. B. et al., “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[8] A. Karpathy, “Hacker’s Guide to Neural Networks.” http://
karpathy.github.io/neuralnets/.

[9] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and
S. W. Keckler, “Virtualizing deep neural networks for
memory-efficient neural network design,” arXiv preprint

arXiv:1602.08124, 2016.
[10] M. Rhu, N. Gimelshein, and J. C. et al., “vDNN: Virtualized

deep neural networks for scalable, memory-efficient neural
network design,” in MICRO, 2016.

[11] H. Kim, H. Nam, W. Jung, and J. Lee, “Performance analysis
of CNN frameworks for GPUs,” in ISPASS, 2017.

[12] S. Han, X. Liu, and H. M. et al., “EIE: efficient inference engine
on compressed deep neural network,” in ISCA, pp. 243–254,
2016.

[13] W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and
Improving the Use of Demand-fetched Caches in GPUs,” in
Proceedings of the 26th ACM International Conference on
Supercomputing, pp. 15–24, 2012.

[14] Y. Tian, S. Puthoor, and J. G. et al., “Adaptive GPU cache
bypassing,” in Proceedings of the 8th Workshop on General
Purpose Processing Using GPUs, GPGPU-8, pp. 25–35, 2015.

[15] I. Singh, A. Shriraman, and W. W. L. F. et al., “Cache coherence
for GPU architectures,” in HPCA, pp. 578–590, 2013.

[16] H. Wang, V. Sathish, and R. S. et al., “Workload and Power
Budget Partitioning for Single-Chip Heterogenous Processors,”
in PACT, 2012.

5

http://karpathy.github.io/neuralnets/
http://karpathy.github.io/neuralnets/

	Introduction
	Deep Neural Networks (DNNs)
	Experimental Setup
	Workloads
	Real Machine Configuration

	Real Machine Characterization
	Execution Time and Instruction Distribution
	Cache Access Behavior
	Memory Bandwidth Demand

	Related Work
	Conclusion
	References

