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Abstract—
There is a growing research interest in quantum computing

because of its promise to provide significant performance speedups
over classical computers at specialized tasks. While there have
been many advances in building more capable, robust, and useful
quantum algorithms and software, it is not clear how a scalable,
high-performance, and area-efficient quantum architecture should
be designed for efficient execution of various quantum workloads.
This paper attempts to fill this gap by performing a detailed
characterization of many real-world quantum algorithms on SIMD-
style quantum architectures. Specifically, we characterize the effect
of size and the number of SIMD regions of a quantum SIMD
architecture on various metrics such as performance, utilization,
qubit (data) movement etc. We hope that the presented insights on
the trade-offs and relationships between aforementioned evaluation
metrics will be useful towards designing an efficient and scalable
quantum architecture.

I. INTRODUCTION

Recent advances in the quantum computing research has
significantly increased the possibility of adopting quantum
computers in the near future [1]. Many leading computer
industries such as Google, IBM, Intel, and Microsoft are
making significant investments in quantum computing tech-
nology [1]–[4] because of its potential to provide very im-
pressive performance speedups and reduction in computational
complexity over traditional/classical super computing clusters
for specific tasks such as large-scale factoring and searching
operations [5], [6]. These improvements are possible because
of the core differences between quantum and classical com-
puting. In contrast to classical computing, quantum computing
algorithms traverse through large solution spaces exponentially
fast by taking advantage of qubits [6]. A qubit, or quantum-
bit, is the medium of information storage in a quantum
computer, which is a superposition of 0 and 1 states. Therefore,
a string of only n qubits can simultaneously represent 2n

different solution states of a problem and thereby facilitating
in searching the solution space exponentially faster.

While many of the previous works [7] have focused on
making quantum algorithms more robust, realizable, and error-
resilient, significant work is required to architect a perfor-
mance and energy-efficient quantum computer. This issue
is even more important than it is in classical computers,
because of the fact that quantum bits are highly error-prone
and require very expensive Quantum Error Correcting Code
(QECC) operations for reliable computation [6]. If the com-
putation times can be reduced by avoiding the addition of extra

quantum hardware, the overall probability of incurring errors
can potentially be reduced as well.

Currently, the most prevalent quantum computer archi-
tecture design will employ ion-trap technology [6], [8] for
qubits and quantum operations. Analogous to the well-studied
single-instruction multiple data (SIMD) classical computers,
Heckey et al. [9] proposed ion-trap technology based multi-
SIMD architecture for efficient quantum computation. This
architecture consists of multiple SIMD regions (say k) with
each region capable of executing a quantum gate operation on
multiple qubits (say d) at the same time. Drawing parallels to
the classical SIMD computer, k is the number of SIMD cores
and d is the width of each core. All these cores communicate to
the global memory, where qubits are stored. These qubits are
moved to cores as when required for computation. If sufficient
amount of inter-region parallelism (to exploit quantum logic
gate (instruction)-level parallelism) and intra-region paral-
lelism (to exploit qubit (data)-level parallelism across multiple
qubits within a region) is present in the quantum applications,
the proposed architecture is capable of concurrently working
on k × d qubits leading to very high-performance speedups.
Although this architecture is promising, there is no prior work
that performs a deep analysis of the factors that affect different
architecture-specific metrics such as performance, utilization,
qubit movement, performance/area etc. Our goal is to deeply
characterize various quantum workloads across different quan-
tum architecture choices to understand the trade-offs and
relationships between aforementioned evaluation metrics. We
hope that our observations would be helpful towards designing
an efficient and scalable quantum architecture. Specifically,
this paper makes the following contributions:
• We show that many different quantum workloads have

varied inter- and intra-SIMD region parallelism requirements.
Therefore, a multi-SIMD quantum architecture can either
provide inferior performance or be severely underutilized if
the parallelism characteristics of a quantum application are
not considered during the design of the architecture.
•We analyze the qubit movements for different multi-SIMD

architecture choices and show that the number of moves is
not only related to the number of regions but also on the
width of each region. Therefore, it is imperative to carefully
architect a multi-SIMD architecture if qubit movements need
to be minimized.
• Finally, we show that there is significant variation in



parallelism and movement characteristics even within a single
quantum application at different instances of its execution.
Therefore, such variations should also be considered while
designing a more efficient quantum architecture.

To our knowledge, this is the first work that compre-
hensively analyzes multi-SIMD quantum architectures and
quantifies the effect of important design parameters (i.e., width
and number of SIMD regions) on various metrics such as per-
formance, utilization, qubit movement, and performance/area.
The rest of the paper is structured as follows. Section II pro-
vides background on quantum computing and quantum SIMD
architectures. Section III describes the considered evaluation
metrics in the context of quantum architectures along with
an illustrative example. Evaluation methodology is described
in Section IV followed by experimental results and analysis
in Section V. Section VI describes the prior work related
to this paper. Finally, we summarize our key conclusions in
Section VII.

II. BACKGROUND

In this section, we provide a brief background on quantum
computing, the quantum SIMD architecture, and the evaluated
quantum workloads.

A. Quantum Computing

Quantum computing boasts impressive speedups at specific
tasks when compared to classical computers. These tasks
include database search and integer factoring algorithms [5],
[6], [10]; processes that may take a current super computing
cluster an unreasonably long amount of time to accomplish.
The core difference between quantum computing and classical
computing lies in the quantum mechanical properties of qubits.
A qubit, or quantum bit, stores the information in a quantum
computer. While a traditional bit can only exist in either the 0
or 1 state at any given instance, a qubit can exist in a quantum
superposition of both states simultaneously. A qubit state can
be represented as:

ψ = α|0 > +β|1 >

where α2 and β2 represent the probability amplitude of the
qubit state to collapse into the 0 or 1 state, respectively. A
string of N qubits is now capable of representing a superposi-
tion of 2N binary strings simultaneously. A quantum operation
performed on this qubit string is therefore intrinsically parallel,
equivalent to a classical operation being performed on each
binary string constructing the superposition, individually.

Qubits have other special properties that require attention
when dealing with quantum information. The exact state of a
quantum system cannot be copied from one qubit to another
without destroying the original quantum state. This is known
as the no cloning theorem [6]. Thus, moving information or
data within a quantum computer requires either physically
moving the qubits via ballistic motion, or transmitting the
quantum state via quantum teleportation [6], [9], [11], [12].
Because of the delicacy of quantum superposition in regards
to decoherence (i.e., the state of the quantum bit can only be

maintained for a short window of time before it decoheres),
the interaction between qubits and their environment must be
minimized in order to reduce computation errors. The primary
source of qubit decoherence is qubit motion required for
communication. Thus, as will be discussed in further sections,
new techniques need to be developed to reduce the amount of
qubit movement.

The most prominent physically realizable quantum com-
puter is the ion-trapped quantum computer [6], [8], [9].
Trapped ions are promising qubit candidates because of their
relatively long decoherence times (compared to their operation
times) and the ability to confine ions to a small point in space
via ion traps (as opposed to linear optical quantum computing
(LOQC), which uses photons as qubits, and therefore cannot
be trapped as easily) [6]. The two states of the qubits, 0 and
1, can be realized in a trapped ion qubit as either the ground
state and excited state, or as two hyperfine states. There also
exists experimental protocol for the quantum teleportation of
ion quantum states, which as discussed previously is used for
the communication of data within a quantum computer.

B. Quantum SIMD Architecture

In this paper, we assume a Single-Instruction-Multiple-Data
(SIMD) quantum architecture initially proposed by Heckey et
al. [9]. Figure 1 shows the schematic of a SIMD quantum
architecture consisting of four (4) SIMD operating regions. If
the architecture has more than one SIMD operating region,
the architecture is also called as multi-SIMD quantum ar-
chitecture [9]. However, without the loss of generality, we
use multi-SIMD quantum architecture and SIMD quantum
architecture terminology interchangeably in the paper. Each
SIMD operating region is capable of storing and working on
multiple qubits at a time. In Figure 1, we assume that each
region can store and work on sixteen (16) qubits at a time.
We call this the capacity or the width of the SIMD region.

The actual computations performed on qubits take place in
a SIMD operating region. If a particular quantum logic gate
operation (e.g., H, CNOT [13] etc.) needs to be performed
on qubits, those particular qubits need to be placed in a par-
ticular SIMD region. Making analogy to a classical computer,
quantum logic gate operation can be considered as a particular
instruction and qubits in the same region can be considered as
data. Therefore, a particular instruction (quantum logic gate
operation) can be applied to multiple data (qubits) placed in
the same SIMD operating region, thereby leveraging data-level
parallelism. A quantum logic gate operation is applied to a
particular SIMD region with the help of microwave pulse as
shown by SIMD control signal in Figure 1. A peculiar property
of this microwave pulse is that it is applied to all the qubits
present in the particular region and hence cannot be selectively
applied to a subset of qubits present in the region. Therefore,
if a particular gate operation needs to be applied to only a
subset of qubits present in the region, the remaining qubits
have to be moved to a shielded place such as global memory.
The qubits stored in the global memory do not get affected
by any SIMD control signals (e.g., gate operations) triggered
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Fig. 1: A SIMD quantum architecture showing four SIMD
regions with each region capable or working on sixteen
qubits at a time. Therefore, the total capacity of the shown
architecture is 64 (4 × 16) qubits. Note that these numbers
are only for illustrative purposes and we have evaluated many
different configurations of the SIMD quantum architectures.

at any of the regions. It is important to note that multiple
different SIMD regions can concurrently apply different quan-
tum logic gate operations thereby supporting quantum logic
gate (instruction)-level parallelism. To assist qubit movement
between regions and global memory, teleportation units are
employed (as shown in Figure 1). Please refer to the previous
literature on quantum teleportation [6] for understanding the
mechanics of the actual physical communication process.

C. Evaluated Quantum Algorithms

In order to evaluate various quantum computing architec-
tures, we study eight quantum algorithms. Some brief notes
on each benchmark are as follows:
• Binary Welded Tree (BWT): Traversal of two balanced

binary trees based on a continuous time quantum walk, as
opposed to quantum algorithms that employ Quantum Fourier
transform (QFT). Finds path between entry and exit node of
the graph [10].
• Class Number (CN): Polynomial-time quantum algorithm

for the computation of the unit group and class group of a
number field. This quantum algorithm is faster than classical
algorithms as it uses Quantum Fourier transform to solve Pell’s
equation [14].
• Ground State Estimation (GSE): Quantum chemistry

algorithm that utilizes quantum phase estimation to obtain the
energy of a molecular system with fixed nuclear geometry,
with the result stored in a qubit string corresponding to
spin-orbital states. Provides means to simulate a chemical
Hamiltonian on a quantum computer [15].
• Ising Model (IM): Quantum computing implementation

of a mathematical model of ferro-magnetism used in both
statistical mechanics and computer science. The Ising Model

is a model consisting of two discrete spin variables, but can be
applied in a variety of focuses, including magnetic materials,
lattice gases, binary allows, neural systems, and economic
models [16].
• Quantum Fourier Transform (QFT): Linear transforma-

tion on qubits; quantum analog of discrete Fourier transform.
Used to computing discrete logarithm and quantum phase
estimation [17].
• Square Root (SR): Quantum algorithm that computes the

square root in a polynomial ring. Used in Grover’s search
algorithm, a quantum algorithm which employs amplitude
amplification to search a database of elements [9].
• Toffoli (TOFF): Quantum logic gate, also known as

controlled-controlled-NOT gate (CCNOT gate). We have in-
cluded the Toffoli gate in our group of benchmarks as an exam-
ple to explain our evaluation metrics of quantum computation
performance [18].
• Triangle Finding Problem (TFP): Finds a triangle (clique

of size 3) within a dense undirected graph using a quantum
random walk [19].

III. EVALUATION METRICS FOR QUANTUM
ARCHITECTURES

In this section, we define and describe various metrics to
evaluate quantum SIMD architectures, followed by discussions
of these metrics in the context of Toffoli quantum algorithm.

A. Evaluation Metrics: Definitions and Goals

(I) Quantum logic gate and qubit operations. We primarily
focus on two architectural parameters of the SIMD quantum
architecture (Section II): number of SIMD operating regions
(k) and qubit capacity or width of the SIMD operating regions
(d). We assume that each SIMD region can perform one
quantum logic gate operation in one cycle, where one cycle
is defined as the amount of time required for the quantum
logic gate operation to be applied to all qubits present in
the SIMD operating region. We define such an operation
on a qubit as a qubit operation. We further assume that all
the quantum logic gate operations present in the considered
quantum algorithms take the same amount of time if all the
desired qubits are available in the SIMD region. Considering
these assumptions, the maximum number of qubit operations
that can be performed in one cycle is equal to the sum of the
maximum capacity of all regions, which is equal to the product
of number of SIMD operating regions (k) and qubit capacity
of each SIMD region (d). For example, a SIMD architecture
with k = 4 and d = 16, will have a maximum capacity of 64
qubits (also see Section II). This system can apply a maximum
of 4 different quantum logic gate operations (1 operation per
SIMD operating region) in a cycle, operating on a maximum
of 16 qubits per region, leading to 64 qubit operations per
cycle.
(II) Performance. A SIMD architecture presents the oppor-
tunity to execute many qubit operations in parallel. In order
to quantify a quantum algorithm’s performance, we measure
qubit operations per cycle (QOPC), when it is executed
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on a quantum architecture. In order to achieve the greatest
algorithm speedup, the architecture must maximize QOPC
as it is directly related to the time requirements to run a
quantum program. The maximum value of QOPC for an
architecture is the product of k and d. If the application
has many data-dependency chains and is serial in nature, it
will not be able to take advantage of the available intra- and
inter-region parallelism in the architecture. This is true for
applications such as GSE and QFT, whose QOPC value is
far away from the maximum achievable value of it. On the
other hand, other algorithms such as CN and IM have ample
amount of parallelism. We discuss these trends in more detail
in Section V.
(III) Performance/Capacity. One may assume that in order to
maximize quantum algorithm performance, k and d should be
as high as possible. This is true when considering algorithm
performance alone, however when considering a quantum
architecture efficiency, one must examine other metrics such
as the performance per capacity, where capacity is considered
to be directly related to the area, cost, and power consumption
of the architecture. The higher the capacity of the architecture,
the higher its area, cost, and power consumption. Because each
operating region takes up both power and physical space, a
quantum architecture needs to be designed to optimize QOPC
while not wasting resources and capacity. In other words,
QOPC needs to be optimized while keeping the utilization
of the architecture as high as possible. To capture this trend,
we consider the Performance/Capacity (P/C) metric, which has
the similar notion as that of the well-known metric used for
classical computers: Performance/Area.
(IV) Qubit (Data) Movement. The most prominent cause
of qubit interaction with the external environment comes
from qubit (data) movement between global memory and
different SIMD regions. Such movements can cause the loss in
quantum information and induce errors. However, such qubits
movements from SIMD regions to global memory are required
due to the fact that the qubits that do not participate in a gate
operation applied on a SIMD region must be moved to the
global memory, as gate operations will affect all qubits present
in the SIMD region. In summary, a quantum architecture must
minimize the amount of qubit (data) movement in order to
reduce the overall probability of qubit errors as a result of
qubit state collapse. In addition, the qubit movement can also
incur performance overheads due to non-zero communication
latencies (see next).
(V) Communication Cost. Qubit (Data) Movement can also
cause loss in performance (QOPC) due to the cost of commu-
nication (in terms of cycles) involved in bringing the essential
qubits from global memory to the correct SIMD operating
region, as well moving qubits from different SIMD regions
back to the global memory. A realistic communication cost
of moving a qubit between two regions is four cycles [9].
Therefore, a qubit operation (one cycle) which requires a qubit
to be moved from some other region to the correct SIMD
region in which a quantum operation is to be applied will
take five cycles to complete. The time cycles spent waiting

TABLE I: An Illustrative example showing the step by step
logic gate operation scheduling of Toffoli quantum algorithm
on an architecture with only one SIMD operating region
(SIMD1). The average QOPC, P/C and the total number of
moves are shown in bold. The working is shown for three
qubits (a0, a1, a2).

Time Global SIMD1 QOPC P/C Moves
1 a1, a2 H(a0) 1 0.5 1
2 a0, a2 T†(a1) 1 0.5 2
3 a1 T(a2), T(a0) 2 1 3
4 a0 CNOT(a2, a1) 2 1 2
5 a2 CNOT(a1, a0) 2 1 2
6 a0, a2 T†(a1) 1 0.5 1
7 a1 CNOT(a0, a2) 2 1 3
8 a0 CNOT(a1,a2) 2 1 2
9 a0 T†(a1), T†(a2) 2 1 0
10 a1, a2 T(a0) 1 0.5 3
11 a2 CNOT(a1,a0) 2 1 1
12 a0, a2 S(a1) 1 0.5 1
13 a1 CNOT(a0,a2) 2 1 3
14 a1, a2 H(a0) 1 0.5 1
15 a0 CNOT(a2,a1) 2 1 3

1.6 0.8 28

for qubit states to be transported will increase the total cycle
requirements of the quantum program.

B. Understanding Metrics via an Illustrative Example

In this section, we illustrate the previously described metrics
using Toffoli quantum logic gate, also known as the CCNOT
gate (controlled-controlled-NOT gate) [18]. We consider two
scenarios in which the algorithm is mapped to two different
quantum architectures. Table I shows the first scenario, in
which the Toffoli gate is mapped to a SIMD architecture
consisting of only one SIMD region (k = 1) with a capacity
of two qubits (d = 2). As the width of the single SIMD
region is two qubits, the maximum number of qubits that can
be operated on during the same cycle is also two. For the
sake of brevity of the schedule, we assume that the cost of
qubit communication is zero. The Toffoli gate is constructed
by five different quantum logic gates: H gate, T gate, T†

gate, CNOT gate, and S gate. The exact functionality of
these logic gates is described in the technical report [13]. As
evident by the scheduling diagram (Table I), the H, T, T† and
S gates take only one qubit as an input, while the CNOT
requires two qubits as input. In Table I, for each time-step
(or cycle) we show: a) the qubits stored in global memory,
b) the current logic gate operation at the SIMD operating
region, c) value of QOPC (quantum operations per cycle),
d) value of Performance/Capacity (P/C), and e) amount of
qubit movement (moves) per cycle. We assume that all qubits
required by the Toffoli quantum algorithm are initially kept in
the global memory.

At time-step 1, H gate needs to be applied to only qubit
a0. Therefore, the other qubits (a1 and a2) remain shielded in
the global memory. The qubit movement of a0 is considered
as one move. As H gate is applied to only one of the qubit
in the first time step, the value of qubit operation is also one
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leading to QOPC of 1. The P/C value indicates how much
of the resources are wasted when the particular operation is
operated. As the maximum capacity of this architecture is 2
(k = 1 x d = 2), the maximum possible value of P/C is 1
if both qubits of the region are operated in the same cycle of
the region leading to two qubit operations. At time step 1, this
value is 0.5 (1/2). At time step 2, T† needs to be applied to
qubit a1. In order to do so, two moves are necessary. First,
we need to move the existing qubit (a0) in the SIMD region.
This step is necessary because without that T† would also
apply to this qubit (a0) even if is not legal as per the program
order. The second step is to move qubit (a1) to the SIMD
region. Therefore, the global memory contains two qubits: a0
and a2. As only one qubit operation is completed at time-
step 2, QOPC is 1. At time step 3, two separate T gates are
applied to a2 and a0. As the gate operation is the same across
both the qubits, both T gates can be applied at the same time
in the SIMD operating region. However, three moves will be
necessary: one to move a1 back to global memory and two
moves related to bring a0 and a2 to the operating region. As
we observe that, because of only one SIMD region, there are
many back and forth qubits moves which can lead to high
qubit error rate and also cause performance loss (not shown)
because of the involved communication cost.

Table II demonstrates the effect on different metrics by
mapping the same Toffoli quantum algorithm to a SIMD
architecture with two operating regions. If no operation is
applied to a qubit in a particular SIMD region, the qubit is only
shown to represent that it is currently shielded in that SIMD
region. Due to increase in the number of regions (thereby sup-
porting quantum logic gate (instruction)-level parallelism) two
quantum logic gate operations can be executed simultaneously,
whenever possible (see Table II). Two observations are in order
in comparison to the previous case when the Toffoli algorithm
was mapped to only one SIMD operating region. First, we
observe that on average more qubits operations are executed
per cycle because of the increased parallelism. However, the
P/C is reduced, which demonstrates that the increase in QOPC
is not proportional to the increase in architectural resources
(i.e., in terms of capacity). Second, we observe a decrease in
the total number of qubit moves. This reduction seems to be in
contrast to the classical SIMD computing which usually sees
an increase in data movement with the number of cores. This
key difference between classical and quantum computing is
a result of the previously discussed intra-region parallelism.
Quantum multi-SIMD computing must move qubits between
the various SIMD operating regions, however, when a quantum
logic gate is applied to a SIMD region as a microwave pulse, it
will effect all qubits within the region at that cycle. Therefore,
in order to shield a qubit from some quantum operation, it must
be moved into either the global memory or another idle SIMD
region. The sensitivity of qubit movement to both the k and
d values of an architecture presents an optimization problem
for designing a quantum computing architecture. We discuss
the related trade-offs in Section V.

IV. EVALUATION METHODOLOGY

In order to analyze large-scale quantum algorithms that can-
not be scheduled by hand, we utilize a number of previously
contributed software packages. This includes both a quantum
programming language used to write quantum algorithms, as
well as a quantum algorithm compiler. Scaffold is a quantum
programming language developed by the Scaffold Compiler
Working Group [18]. Scaffold is very similar to C, with the
included support for quantum information, data structures, and
quantum logic gates. Quantum algorithms and programs can
be written in Scaffold code, then compiled by the Scaffold
compiler ScaffCC [7]. This framework maps quantum algo-
rithms onto targeted multi-SIMD hardware with the number of
SIMD regions k and SIMD region qubit capacity d. ScaffCC
is capable of executing many scheduling algorithms. For our
benchmark test analysis, we use the Standard Scheduler (SS)
included in the ScaffCC package. This scheduler, as well
as other scheduling algorithms available in the package, are
described in detail in previous work [7], [9], [18]. Once
the algorithm has been mapped to a specified architecture,
ScaffCC reports various metrics concerning this algorithm’s
performance, such as resource estimation (number of qubits
and quantum operation logic gates), qubit operations (the
total number of instances that a qubit is operated on), qubit
movement, and the number of total time cycles required for the
quantum algorithm runtime [7], [9], [18], [20]. These metrics
can be used to analyze a system’s performance for various
quantum benchmark tests.

ScaffCC analysis metrics can be used to report our per-
formance metrics of QOPC, qubit moves, and performance
per area as discussed in the previous section. As our results
demonstrate, these three performance metrics are highly de-
pendent on both the k and d parameters of the multi-SIMD ar-
chitecture. In order to analyze the performance of the different
quantum benchmarks, we schedule benchmarks while evalu-
ating through a range of k and d values. The ranges of these
parameters are k = [1, 2, 4, 6, 8] and d = [2, 4, 16, 32, 64],
therefore we analyze the quantum benchmarks for 25 dif-
ferent multi-SIMD architectures. Each quantum benchmark
is defined by a constant number of qubit operations that is
independent of the quantum computing architecture. For each
combination of k and d parameters, we record the reported
total time cycle count as well as the number of qubit moves.
Using these numbers, we can calculate the average QOPC and
Performance per area metrics for each k and d architecture
combination.

In order to look at the time-wise results for the quantum
benchmarks, we perform a full schedule regression via Scaf-
fCC, which reports a detailed communication-free scheduling
of the quantum algorithm. These schedules list, for each
cycle, which quantum logic gates and qubit movements that
occur, as well as the location of all qubits within the system.
These time-wise results demonstrate how average QOPC and
qubit movement intensity vary over time for each quantum
benchmark, giving further insight into the specific system
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TABLE II: An Illustrative example showing the step by step logic gate operation scheduling of Toffoli quantum algorithm
on an architecture with two SIMD operating regions (SIMD1 and SIMD2). The average QOPC, P/C and the total number of
moves are shown in bold. The working is shown for three qubits (a0, a1, a2).

Time Global SIMD1 SIMD2 QOPC P/C Moves
1 a2 H(a0) T†(a1) 2 0.5 2
2 T(a0), T(a2) a1 2 0.5 1
3 a0 CNOT(a2,a1) 2 0.5 2
4 a2 CNOT(a1,a0) 2 0.5 2
5 T†(a1) CNOT(a0,a2) 2 0.75 2
6 CNOT(a1,a2) T(a0) 3 0.75 1
7 T†(a1), T†(a2) a0 2 0.5 0
8 a2 CNOT(a1,a0) 2 0.5 2
9 S(a1) CNOT(a0, a2) 3 0.75 2

10 H(a0) CNOT(a2,a1) 3 0.75 2
2.4 0.6 16

requirements (k and d parameters) demanded by different
quantum benchmarks.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we analyze the trade-offs and relation-
ships between different metrics previously described in Sec-
tion III. We specifically focus on performance (QOPC), perfor-
mance/capacity, qubit movement (moves) and communication
cost. We have evaluated these metrics across eight real-world
quantum workloads on 25 different choices of SIMD quantum
architectures. These architectures have varying degrees of
capabilities to support quantum logic gate (instruction)-level
parallelism (via different regions) and qubit (data)-level paral-
lelism (via capacity or width of each region). All the presented
data is normalized to that of the metrics obtained on an SIMD
quantum architecture consisting of one region (k = 1) with a
capacity of two qubits (d = 2), unless otherwise specified.
We choose this baseline because this is the smallest-sized
architecture that is able to execute all gate operations in the
considered quantum algorithms. Note that an architecture with
d = 1 would not be able to execute operations such as CNOT.
Further, these results assume that qubit movement only incurs
error overheads and not runtime overheads. This assumption
helps us to focus on the trends in the considered evaluation
metrics while decoupling the effects of the communication
costs. We will also consider runtime overheads in Section V-D.

A. Performance (QOPC) Analysis

Figure 2 shows the trends in QOPC with different SIMD
architecture choices for different quantum algorithms. The
x-axis lists the choices of k for the architecture on which
the corresponding algorithm is executed. We observe that the
trends in QOPC are different across different algorithms. On
one hand, where algorithms such as BWT, QFT, and SR do
not benefit from more than two regions, on the other hand,
algorithms such as CN and IM scale well with the number of
regions. We find that the overall effect of d on QOPC is less
prominent than the effect of k. However, at smaller k values
(k = 1), the effect of d is more noticeable. This implies that
a system with a small k value can still achieve an increase
in QOPC by increasing the capacity d of the SIMD operating

regions. However, at high k values ( k = 8), all QOPC lines
overlap, suggesting the low impact of d on QOPC after certain
k value.
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Fig. 2: Trends observed in Performance (QOPC) with different
SIMD architecture choices.

For better understanding, Figure 3 shows the QOPC of
different algorithms with three different SIMD architectures
each with the same total qubit capacity of 32. We clearly
see that the configuration with the highest number of regions
(8×4) has the highest value of QOPC across all the evaluated
algorithms. We also plot the values of QOPC over time for
QFT application to understand if the effect of k and d varies
over time. Figure 4 shows the changes in QOPC for QFT
for two SIMD architectures with different number of regions
but each with the same qubit capacity. We observe that for
most of the time windows, the architecture with higher number
of regions (2×16) has a higher or the same value as that of
the other architecture choice with a lower number of regions
(1×16). On the other hand, Figure 5 shows the changes in
QOPC for QFT for two SIMD architectures with the same
number of regions but each with different qubit capacity. We
find that higher value of d has not much impact after time
window number 17. However, before that, it has mixed trends.
In the beginning of the execution, the architecture with higher
d value also leads to higher capacity and hence the reason
for very high speedup. However, because of such speedup it
finishes the compute heavy instructions of that particular phase
quickly and is left with instructions with low qubit utilization.
On the other hand, the architecture with lower d has more
steady QOPC for that phase but on average has low QOPC to
the other architecture with a higher d value.

Conclusion. The key idea taken away from this analysis
is that the number of regions (k) has much higher positive
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Fig. 3: Trends observed in Performance (QOPC) with different
SIMD architecture choices each with the same qubit capacity
(iso-capacity).
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Fig. 4: Trends observed in Performance (QOPC) over time
for QFT for two SIMD architectures with different number of
regions but each with the same qubit capacity.

impact on QOPC compared to their capacity (d). Therefore, it
is important to leverage quantum logic gate (instruction)-level
or inter-region parallelism in quantum applications for better
performance.

B. Performance/Capacity Analysis

As per our previous analysis, the average QOPC increases
or remains the same with increase in total qubit capacity of
the architecture. However, supporting higher qubit capacity
architecture is very expensive in terms of cost, area, power
etc. Therefore, it is imperative to consider performance in
conjunction with the capacity of the architecture so that the
architecture is also utilized well. In this context, Figure 6
shows the trends observed for Performance/Capacity (P/C)
metric across different algorithms.

We observe that for many algorithms applications (except
CN and IM), the value of d = 2 is fairly a good choice
to optimize for P/C. However, for the effect of k on P/C is
very significant only at smaller d values (less than or equal to
16). Consequently, the value of k needs to be more carefully
selected when the value of d is low because of the sharp
decline in P/C after a certain k value. For example, algorithms
such as GSE and QFT experience the best P/C values at k = 1;
BWT, SR, TOFF and TFP at k = 2; and CN and IM at k = 4.

Conclusion. The key insight from this study is that both
number of regions (k) and size of each region (d) can have
impact on P/C. It is because of the fact that increasing k
beyond a particular value (which is different for different
applications) can lead to sharp decrease in P/C if a low (d)
value is chosen. Therefore, in order to design an architecture
that is both fast but efficient (highly utilized), one must
consider both k and d carefully.

C. Qubit (Data) Movement Analysis

Figure 7 shows the trends observed in Qubit (Data) Move-
ment with different SIMD architecture choices. We observe
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Fig. 5: Trends observed in Performance (QOPC) over time for
QFT for two SIMD architectures with the same number of
regions but each with different qubit capacity.
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Fig. 6: Trends observed in Performance/Capacity (P/C) with
different SIMD architecture choices.

that, in general, the qubit movement decreases with the
increase in k value. This is in direct agreement with our
discussions in Section III. However, the QFT benchmark
shows a slight increase in total qubit movement between k = 2
and k = 4. This effect is likely because of the scheduler that
optimizes for QOPC instead of qubit movement. The effect
of d varies across algorithms. At low k values, increasing
d decreases the number of moves because fewer qubits are
required to be shielded in the global memory (Section III)
However, at high k values, increasing d will either have no
effect or actually increase the number of moves. This effect
is again because of the scheduler that optimizes for QOPC
instead of qubit movement.
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Fig. 7: Trends observed in Qubit (Data) Movement with
different SIMD architecture choices

For a deeper understanding of the above trends, we looked
at the trends in qubit movement in iso-capacity architectures
(as shown in Figure 8). We clearly observe that the architecture
with the lowest k value has the highest moves. It is because of
the fact that in order to operate different logic gate operations
in fewer regions, more qubits need to be moved to global
memory so that they are not affected by undesirable gate
operations. We also looked at the qubit movement trend over
time for QFT. In Figure 9, the value of d is kept constant across
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both architecture options. We observe again that for most
of the time windows, the 2×16 configuration leads to fewer
qubits moves. In Figure 10, the value of k is kept constant
across both architecture options. As expected, we observe that
the architecture with higher total qubit capacity (1×16) leads
to fewer qubits moves for almost all time windows.
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Fig. 8: Trends observed in Qubit (Data) Movement with
different SIMD architecture choices each with the same qubit
capacity (iso-capacity).
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Fig. 9: Trends observed in Qubit (Data) Movement over time
for QFT for two SIMD architectures with different number of
regions but each with the same qubit capacity.
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Fig. 10: Trends observed in Qubit (Data) Movement over time
for QFT for two SIMD architectures with the same number of
regions but each with different qubit capacity.

Conclusion. The key insight from this study is that, in
general, lower total qubit capacity (k x d) architectures tend
to have higher qubit movement because the qubits that do not
participate in the logic gate operation need to be moved to
global memory often in order to be shielded from undesirable
quantum logic gate operations.

D. Communication Cost Analysis

The previous work assumed that the communication over-
head for quantum teleportation is 4 cycles [9]. However, this
overhead is likely to be changed with the research advances
in the quantum communication technology. In this section, we
evaluate the impact of four different communication latencies
(cl) on performance for two different quantum algorithms:
GSE (Figure 11 and QFT (Figure 12). The x-axis shows

the trends for various cl values, where cl = 0 means no
communication cost and cl = 4 means each move takes
4 cycles. We observe that an increase in cl results in a
decrease in QOPC for both benchmarks. This result is intuitive
because an increase in the number of cycles required for
qubit movement will increase the overall cycle requirement,
therefore decreasing the average QOPC.
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Fig. 11: Effect of communication cost on the performance of
GSE.
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Fig. 12: Effect of communication cost on the performance of
QFT.

Conclusion. Qubit movement is one of the primary causes
of decoherence, which collapses the qubit superposition and
lead to quantum state collapse (computation error). Therefore,
the number of moves as well as the time for which the qubits
are under motion should always be minimized in any given
algorithm.

VI. RELATED WORK

To the best of our knowledge, this is the first work that per-
forms a deep characterization of various quantum algorithms
on a variety of SIMD architectures and show that there is a
significant difficulty in optimizing different architectural pa-
rameters in order to achieve high performance and efficiency.
In this section, we briefly describe the previous works closest
to ours.
Quantum Computing. Quantum algorithms have been for-
mulated and written by a number of authors [5], [7], [10],
[14]–[17], [19], [21], [22]. Previous work demonstrates the
use of QPE (quantum phase estimation) in various quantum
benchmarks, as well as various methods used to manage the
expensive computational requirements of QPE [23]. In this pa-
per, we leverage the previously proposed quantum benchmarks
to evaluate different designs of quantum computers.
Quantum Compiler Framework and Tools. Previous work
on quantum computing has focused on both high-level pro-
gramming languages [18] and quantum program compilers and
analysis [7]. In this context, the ScaffCC framework was pro-
posed to analyze various large-scale quantum programs written
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in the Scaffold programming language [7]. This framework is
able to generate various quantum code metrics and schedules
of different operations dependent on the simulated quantum
architecture.
Quantum Architectures. The proposition of Multi-SIMD
quantum computing architecture design is based on previous
quantum computing architecture and quantum memory hierar-
chy research [8], [11], [24]–[29]. Heckey et al. [9] proposed
an ion trap multi-SIMD architecture composed of k SIMD
operating regions each with a width or qubit capacity of d [8],
[9] to execute many quantum applications written in Scaffold
programming language. These programs are scalable and can
be mapped to different SIMD architecture with different archi-
tectural properties (k, d, communication latency weights [6],
[9], [12], [30]). In this work, we leverage the aforementioned
tools and framework to collectively analyze multiple quantum
architectural parameters on different evaluation metrics.

VII. CONCLUSIONS

Although scalable quantum computers that can process large
amounts of qubits are not yet available, there have been recent
research advances on the software and scheduling side of quan-
tum computing. Our analysis of the simulation of quantum
benchmarks on multi-SIMD architectures provides insights
into the design of a quantum architecture that will be necessary
for a scalable quantum computer. In our work, we show that
there is no single most efficient quantum computing archi-
tecture for all quantum algorithms or for all the considered
evaluation metrics, which is a result of the varied architectural
needs of the different real-world quantum algorithms. In order
to develop an optimized quantum architecture, one should
consider the effects of different architectural parameters such
as the number and size of SIMD regions, and communication
overheads between SIMD regions and the global memory.
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